Thermal transformations during thermal recovery of end-of-life composite carbon fiber beams from wind turbine blades

IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL Journal of Analytical and Applied Pyrolysis Pub Date : 2024-11-26 DOI:10.1016/j.jaap.2024.106879
Han Jiang , Lichao Ge , Hongcui Feng , Chunyao Xu , Qingyuan Yang , Xinkai Li , Xin Liu , Yang Wang , Chang Xu
{"title":"Thermal transformations during thermal recovery of end-of-life composite carbon fiber beams from wind turbine blades","authors":"Han Jiang ,&nbsp;Lichao Ge ,&nbsp;Hongcui Feng ,&nbsp;Chunyao Xu ,&nbsp;Qingyuan Yang ,&nbsp;Xinkai Li ,&nbsp;Xin Liu ,&nbsp;Yang Wang ,&nbsp;Chang Xu","doi":"10.1016/j.jaap.2024.106879","DOIUrl":null,"url":null,"abstract":"<div><div>The effects of thermal recovery technology on the composite carbon fiber beams from wind turbine blades were investigated. Nonisothermal thermogravimetric experiments performed under different atmospheres showed that the reaction activation energy were the smallest for N<sub>2</sub>, and Δm was approximately 21.64 %. The activation energy was largest in air. The activation energies of the nonisothermal reactions at heating rates of 5, 10, and 15 °C/min in N<sub>2</sub> were 93.43, 116.95 and 128.86 kJ/mol, respectively. Higher heating rates led to more difficult reactions. The compositions of the products formed during isothermal pyrolysis at 600 °C were analyzed. CO<sub>2</sub> was the main component of gaseous products; and the remaining components were small combustible gases. The gas products accounted for 4.58 % of the total yield. The liquid tar product was approximately 21.28 %, featuring mostly aromatic substances containing arene rings, similar to phenol. The solid products accounted for approximately 74.14 % of the weight of the original reactant. The reaction mechanism was analyzed; the reaction predominantly involved the resin component of the composite, and the recovered carbon fibers remained essentially unchanged after the reaction. These results showed that it is feasible to recover carbon fibers from wind turbine blade composite carbon fiber beams by pyrolysis.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"185 ","pages":"Article 106879"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024005345","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of thermal recovery technology on the composite carbon fiber beams from wind turbine blades were investigated. Nonisothermal thermogravimetric experiments performed under different atmospheres showed that the reaction activation energy were the smallest for N2, and Δm was approximately 21.64 %. The activation energy was largest in air. The activation energies of the nonisothermal reactions at heating rates of 5, 10, and 15 °C/min in N2 were 93.43, 116.95 and 128.86 kJ/mol, respectively. Higher heating rates led to more difficult reactions. The compositions of the products formed during isothermal pyrolysis at 600 °C were analyzed. CO2 was the main component of gaseous products; and the remaining components were small combustible gases. The gas products accounted for 4.58 % of the total yield. The liquid tar product was approximately 21.28 %, featuring mostly aromatic substances containing arene rings, similar to phenol. The solid products accounted for approximately 74.14 % of the weight of the original reactant. The reaction mechanism was analyzed; the reaction predominantly involved the resin component of the composite, and the recovered carbon fibers remained essentially unchanged after the reaction. These results showed that it is feasible to recover carbon fibers from wind turbine blade composite carbon fiber beams by pyrolysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
11.70%
发文量
340
审稿时长
44 days
期刊介绍: The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.
期刊最新文献
Distribution characteristics of trace elements (As/Cr/Mn/Cu/Pb) in the thermal fragmentation and strengthening fragmentation processes of low-rank coal with high sulfur content Aromatic-enriched bio-oil from lignin pyrolysis catalyzed by HZSM-5: Insights into product selectivity and in-situ deoxygenation mechanism Thermal transformations during thermal recovery of end-of-life composite carbon fiber beams from wind turbine blades Pyrolysis behavior of non-textile components (buttons) and their kinetic analysis using artificial neural network From brewers’ waste to fuel precursors: Catalytic pyrolysis of BSG using CaO and Nb2O5-based catalysts for enhanced hydrocarbon production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1