Dongxue Zhao , Cong Song , Yanfeng Liu , Xiaoyun Wang
{"title":"Thermal physiological characteristics of the Xizang people in asymmetrical dressing exposures on the plateau","authors":"Dongxue Zhao , Cong Song , Yanfeng Liu , Xiaoyun Wang","doi":"10.1016/j.buildenv.2024.112252","DOIUrl":null,"url":null,"abstract":"<div><div>The Xizang people, living in the “Third Pole of the World,” have long-formed asymmetrical dressing habits that pose unique challenges to their physiological mechanisms. This study examined the physiological parameters of the Xizang people under symmetrical and various asymmetrical dressing angles to analyze the influence of these dressing styles on their thermal responses. Partial correlation analysis was used to further clarify the physiological thermal assessment indicator of the Xizang people. The results showed that, compared to symmetrical dressing, the Xizang people exhibited higher blood perfusion index and core temperature under asymmetrical dressing. In cold environments, those with symmetrical dressing had higher mean arterial pressure, heart rate, and relative activity ratio of sympathetic to parasympathetic nervous system, indicating dominant sympathetic nerve activity. At an ambient temperature of 15 °C, the Xizang people demonstrated a mean skin temperature difference of 2.6 °C and a right wrist temperature difference of 4.5 °C between symmetrical and the asymmetrical dressing angle with 50° Skin temperature was identified as the physiological thermal assessment indicator for the Xizang people considering asymmetrical dressing styles. This study provided a physiological foundation for the accurate design of plateau built environments suitable for the Xizang people.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"267 ","pages":"Article 112252"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360132324010941","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Xizang people, living in the “Third Pole of the World,” have long-formed asymmetrical dressing habits that pose unique challenges to their physiological mechanisms. This study examined the physiological parameters of the Xizang people under symmetrical and various asymmetrical dressing angles to analyze the influence of these dressing styles on their thermal responses. Partial correlation analysis was used to further clarify the physiological thermal assessment indicator of the Xizang people. The results showed that, compared to symmetrical dressing, the Xizang people exhibited higher blood perfusion index and core temperature under asymmetrical dressing. In cold environments, those with symmetrical dressing had higher mean arterial pressure, heart rate, and relative activity ratio of sympathetic to parasympathetic nervous system, indicating dominant sympathetic nerve activity. At an ambient temperature of 15 °C, the Xizang people demonstrated a mean skin temperature difference of 2.6 °C and a right wrist temperature difference of 4.5 °C between symmetrical and the asymmetrical dressing angle with 50° Skin temperature was identified as the physiological thermal assessment indicator for the Xizang people considering asymmetrical dressing styles. This study provided a physiological foundation for the accurate design of plateau built environments suitable for the Xizang people.
期刊介绍:
Building and Environment, an international journal, is dedicated to publishing original research papers, comprehensive review articles, editorials, and short communications in the fields of building science, urban physics, and human interaction with the indoor and outdoor built environment. The journal emphasizes innovative technologies and knowledge verified through measurement and analysis. It covers environmental performance across various spatial scales, from cities and communities to buildings and systems, fostering collaborative, multi-disciplinary research with broader significance.