Kyle Lammers , Kaixiang Zhang , Keyi Zhu , Pengyu Chu , Zhaojian Li , Renfu Lu
{"title":"Development and evaluation of a dual-arm robotic apple harvesting system","authors":"Kyle Lammers , Kaixiang Zhang , Keyi Zhu , Pengyu Chu , Zhaojian Li , Renfu Lu","doi":"10.1016/j.compag.2024.109586","DOIUrl":null,"url":null,"abstract":"<div><div>Harvesting labor is the single largest cost in apple production in the U.S. Increased cost and growing shortage of labor has forced the apple industry to seek automated harvesting solutions. Despite considerable progress in recent years, the existing robotic harvesting systems still fall short of performance expectations, lacking robustness and proving inefficient or overly complex for practical commercial deployment. In this paper, we present the development and evaluation of a new dual-arm robotic apple harvesting system. The system hardware mainly consists of a perception component, two four-degree-of-freedom manipulators, a centralized vacuum system, and a fruit handling and bin filling component designed for the collection and transportation of picked fruits. Synergistic functionalities for automated apple harvesting were achieved through the development of software algorithms. In particular, an updated perception system based on dual-laser scanning was proposed to enable sequential localization of apples for the dual-arm robotic system. A sophisticated planning scheme was devised to coordinate the movement of the two manipulators, allowing them to approach the fruit effectively and share a centralized vacuum system for efficient fruit detachment. The robotic system has been evaluated through field trials in a challenging apple orchard with complex, dense canopy, and it achieved 60% successful picking rate. The dual-arm coordination algorithm resulted in 9% to 34% harvest time improvements, compared to the 1-arm robotic system design. The new dual-arm robotic system is compact in design and dexterous in movement, and with further improvements in hardware and software, it holds great potential for providing a commercially viable harvesting automation solution for the apple industry</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109586"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924009773","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Harvesting labor is the single largest cost in apple production in the U.S. Increased cost and growing shortage of labor has forced the apple industry to seek automated harvesting solutions. Despite considerable progress in recent years, the existing robotic harvesting systems still fall short of performance expectations, lacking robustness and proving inefficient or overly complex for practical commercial deployment. In this paper, we present the development and evaluation of a new dual-arm robotic apple harvesting system. The system hardware mainly consists of a perception component, two four-degree-of-freedom manipulators, a centralized vacuum system, and a fruit handling and bin filling component designed for the collection and transportation of picked fruits. Synergistic functionalities for automated apple harvesting were achieved through the development of software algorithms. In particular, an updated perception system based on dual-laser scanning was proposed to enable sequential localization of apples for the dual-arm robotic system. A sophisticated planning scheme was devised to coordinate the movement of the two manipulators, allowing them to approach the fruit effectively and share a centralized vacuum system for efficient fruit detachment. The robotic system has been evaluated through field trials in a challenging apple orchard with complex, dense canopy, and it achieved 60% successful picking rate. The dual-arm coordination algorithm resulted in 9% to 34% harvest time improvements, compared to the 1-arm robotic system design. The new dual-arm robotic system is compact in design and dexterous in movement, and with further improvements in hardware and software, it holds great potential for providing a commercially viable harvesting automation solution for the apple industry
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.