{"title":"Monitoring soil salinity in coastal wetlands with Sentinel-2 MSI data: Combining fractional-order derivatives and stacked machine learning models","authors":"Congcong Lao , Xiayang Yu , Lucheng Zhan , Pei Xin","doi":"10.1016/j.agwat.2024.109147","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring soil salinity is essential for understanding the behavior of coastal wetland ecosystems and implementing effective management strategies. Despite the advantages of the Multi-Spectral Instrument (MSI) data for large-scale, high-frequency soil salinity monitoring, challenges remain in data preprocessing and model construction. We combined fractional-order derivative (FOD) technology with stacked machine learning models to monitor and map soil salinity using Sentinel-2 MSI data. The base models included Elastic Net Regression, Support Vector Regression, Artificial Neural Network, Extreme Gradient Boosting, and Random Forest, with Non-Negative Least Squares as the meta-learner. The results showed that low-order FOD enhanced image gradients and maintained a high peak signal-to-noise ratio, thereby improving the correlation with soil salinity. Notably, the 0.25-order FOD showed the best performance, increasing the correlation coefficient with soil salinity by up to 13 %. The stacked machine learning models effectively combined the strengths of different base models, enhancing prediction accuracy by more than 8 % compared to single models. Furthermore, combining stacked models with FOD further improved prediction accuracy, with an increase in R² of up to 9 %. The combination of 0.25-order FOD and the stacked machine learning model achieved the best performance (R² = 0.82, RMSE = 10.19 ppt, RPD = 2.38, RPIQ = 4.69). This approach provides a reference for rapid and effective large-scale digital mapping of soil salinity in coastal wetlands.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"306 ","pages":"Article 109147"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377424004839","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring soil salinity is essential for understanding the behavior of coastal wetland ecosystems and implementing effective management strategies. Despite the advantages of the Multi-Spectral Instrument (MSI) data for large-scale, high-frequency soil salinity monitoring, challenges remain in data preprocessing and model construction. We combined fractional-order derivative (FOD) technology with stacked machine learning models to monitor and map soil salinity using Sentinel-2 MSI data. The base models included Elastic Net Regression, Support Vector Regression, Artificial Neural Network, Extreme Gradient Boosting, and Random Forest, with Non-Negative Least Squares as the meta-learner. The results showed that low-order FOD enhanced image gradients and maintained a high peak signal-to-noise ratio, thereby improving the correlation with soil salinity. Notably, the 0.25-order FOD showed the best performance, increasing the correlation coefficient with soil salinity by up to 13 %. The stacked machine learning models effectively combined the strengths of different base models, enhancing prediction accuracy by more than 8 % compared to single models. Furthermore, combining stacked models with FOD further improved prediction accuracy, with an increase in R² of up to 9 %. The combination of 0.25-order FOD and the stacked machine learning model achieved the best performance (R² = 0.82, RMSE = 10.19 ppt, RPD = 2.38, RPIQ = 4.69). This approach provides a reference for rapid and effective large-scale digital mapping of soil salinity in coastal wetlands.
期刊介绍:
Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.