Plasma coloring of Ti via air atmospheric pressure plasma jet for dentistry

IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Surface & Coatings Technology Pub Date : 2024-10-30 DOI:10.1016/j.surfcoat.2024.131485
Ching-Fang Hsu , Chun-Yu Ho , Yu-Lin Kuo , Ying-Sui Sun , Yan-Qiao Zhao , Wen-Chien Chen , Hao-Chun Chiu
{"title":"Plasma coloring of Ti via air atmospheric pressure plasma jet for dentistry","authors":"Ching-Fang Hsu ,&nbsp;Chun-Yu Ho ,&nbsp;Yu-Lin Kuo ,&nbsp;Ying-Sui Sun ,&nbsp;Yan-Qiao Zhao ,&nbsp;Wen-Chien Chen ,&nbsp;Hao-Chun Chiu","doi":"10.1016/j.surfcoat.2024.131485","DOIUrl":null,"url":null,"abstract":"<div><div>The aesthetic appeal of titanium dental implants is compromised by unattractive coloration, and extended exposure to bodily fluids can result in the release of ions, potentially causing infection or inflammation. This study introduces a direct method for oxidizing titanium through plasma coloring to enhance biocompatibility. Utilizing a tornado-type atmospheric pressure plasma jet (APPJ) with compressed dry air as the working gas, sub-stoichiometric titanium oxide was produced on sample surfaces. Analysis of reactive oxygen species (ROS) in air plasma via optical emission spectroscopy offers valuable insights into the interaction between plasma and the surface during the oxidation process. Quantification of surface coloration in titanium samples before and after treatment with air-APPJ was conducted using CIE chromaticity diagrams and color temperature analysis. This analytical approach enabled the assessment of thermal and plasma-chemical impacts of plasma coloring on the development of the sub-stoichiometric titanium oxide layer. The resulting oxide layers from the APPJ process exhibited a vibrant golden shade, along with enhanced surface hydrophilicity, improved anticorrosion properties, and enhanced cellular responses.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131485"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224011162","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

The aesthetic appeal of titanium dental implants is compromised by unattractive coloration, and extended exposure to bodily fluids can result in the release of ions, potentially causing infection or inflammation. This study introduces a direct method for oxidizing titanium through plasma coloring to enhance biocompatibility. Utilizing a tornado-type atmospheric pressure plasma jet (APPJ) with compressed dry air as the working gas, sub-stoichiometric titanium oxide was produced on sample surfaces. Analysis of reactive oxygen species (ROS) in air plasma via optical emission spectroscopy offers valuable insights into the interaction between plasma and the surface during the oxidation process. Quantification of surface coloration in titanium samples before and after treatment with air-APPJ was conducted using CIE chromaticity diagrams and color temperature analysis. This analytical approach enabled the assessment of thermal and plasma-chemical impacts of plasma coloring on the development of the sub-stoichiometric titanium oxide layer. The resulting oxide layers from the APPJ process exhibited a vibrant golden shade, along with enhanced surface hydrophilicity, improved anticorrosion properties, and enhanced cellular responses.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过空气大气压等离子喷射对钛进行等离子着色,用于牙科治疗
钛金属牙科植入物的美观度会因着色不美观而大打折扣,长时间暴露在体液中会导致离子释放,从而可能引起感染或炎症。本研究介绍了一种通过等离子着色氧化钛以提高生物相容性的直接方法。利用以压缩干燥空气为工作气体的龙卷风式大气压力等离子体射流(APPJ),在样品表面生成亚均一氧化钛。通过光学发射光谱分析空气等离子体中的活性氧(ROS),可以深入了解氧化过程中等离子体与表面之间的相互作用。使用 CIE 色度图和色温分析法对钛样品在使用空气-APPJ 处理前后的表面着色情况进行了量化。通过这种分析方法,可以评估等离子着色对亚计量氧化钛层的形成所产生的热影响和等离子化学影响。APPJ 工艺产生的氧化层呈现出鲜艳的金色,同时表面亲水性增强,防腐性能提高,细胞反应增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
期刊最新文献
Editorial Board Stability-enhanced (Cu-, Zn-)MOFs via (Cu, Zn)S composite strategy: A promising approach for oil-water separation A smart self-healing coating utilizing pH-responsive dual nanocontainers for corrosion protection of aluminum alloy Integrating TiNx to Fe-based amorphous coating by reactive plasma spray for ameliorating multi-scale mechanical behavior and corrosion-abrasion resistance Laser-zoned treatment of magnesium surfaces with predictable degradation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1