Enhanced anticorrosive, antimicrobial and biocompatible properties of AZ91D magnesium alloy by MAO-polycaprolactone-modified ZnO composite coating

IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Surface & Coatings Technology Pub Date : 2024-10-30 DOI:10.1016/j.surfcoat.2024.131484
Wei He , Zijie Shao , Jianghai He , Yulin Zhang , Mengge Sun , Yaqi Jiang , Zhenguo Wen , Fei Chen
{"title":"Enhanced anticorrosive, antimicrobial and biocompatible properties of AZ91D magnesium alloy by MAO-polycaprolactone-modified ZnO composite coating","authors":"Wei He ,&nbsp;Zijie Shao ,&nbsp;Jianghai He ,&nbsp;Yulin Zhang ,&nbsp;Mengge Sun ,&nbsp;Yaqi Jiang ,&nbsp;Zhenguo Wen ,&nbsp;Fei Chen","doi":"10.1016/j.surfcoat.2024.131484","DOIUrl":null,"url":null,"abstract":"<div><div>Magnesium alloys are biodegradable metal implant materials that are prone to corrosion in human body fluids and are poor biocompatible as a consequence. Herein, we report the preparation of a ceramic layer on an AZ91D magnesium alloy using the micro-arc oxidation (MAO) technique, after which polycaprolactone/citric-acid-monohydrate-modified nano‑zinc oxide was composited on the ceramic layer using a sol–gel method. The MAO-polycaprolactone-modified ZnO composite coating exhibited superior corrosion resistance compared to magnesium alloy, and a higher electrochemical impedance in simulated body fluid (1.0397 × 10<sup>7</sup> vs. 8.444 × 10<sup>2</sup> Ω·cm<sup>2</sup>). Furthermore, data from immersion, antimicrobial, hemolysis, cell-viability, and-proliferation testing revealed that the composite coating is significantly more antimicrobial and biocompatible than the magnesium alloy. We conclude that such composite coatings have considerable potential for use in biomedical orthopedic-implant applications.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131484"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224011150","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium alloys are biodegradable metal implant materials that are prone to corrosion in human body fluids and are poor biocompatible as a consequence. Herein, we report the preparation of a ceramic layer on an AZ91D magnesium alloy using the micro-arc oxidation (MAO) technique, after which polycaprolactone/citric-acid-monohydrate-modified nano‑zinc oxide was composited on the ceramic layer using a sol–gel method. The MAO-polycaprolactone-modified ZnO composite coating exhibited superior corrosion resistance compared to magnesium alloy, and a higher electrochemical impedance in simulated body fluid (1.0397 × 107 vs. 8.444 × 102 Ω·cm2). Furthermore, data from immersion, antimicrobial, hemolysis, cell-viability, and-proliferation testing revealed that the composite coating is significantly more antimicrobial and biocompatible than the magnesium alloy. We conclude that such composite coatings have considerable potential for use in biomedical orthopedic-implant applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 MAO-聚己内酯改性氧化锌复合涂层增强 AZ91D 镁合金的防腐、抗菌和生物相容性能
镁合金是一种可生物降解的金属植入材料,在人体体液中容易腐蚀,因此生物相容性较差。在此,我们报告了利用微弧氧化(MAO)技术在 AZ91D 镁合金上制备陶瓷层,然后利用溶胶-凝胶法在陶瓷层上合成聚己内酯/一水柠檬酸改性纳米氧化锌。与镁合金相比,MAO-聚己内酯改性氧化锌复合涂层具有更优异的耐腐蚀性,在模拟体液中的电化学阻抗更高(1.0397 × 107 vs. 8.444 × 102 Ω-cm2)。此外,浸泡、抗菌、溶血、细胞活力和增殖测试的数据显示,复合涂层的抗菌性和生物相容性明显优于镁合金。我们的结论是,这种复合涂层在生物医学骨科植入物应用中具有相当大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
期刊最新文献
Editorial Board Stability-enhanced (Cu-, Zn-)MOFs via (Cu, Zn)S composite strategy: A promising approach for oil-water separation A smart self-healing coating utilizing pH-responsive dual nanocontainers for corrosion protection of aluminum alloy Integrating TiNx to Fe-based amorphous coating by reactive plasma spray for ameliorating multi-scale mechanical behavior and corrosion-abrasion resistance Laser-zoned treatment of magnesium surfaces with predictable degradation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1