Optimising full waveform inversion with inhomogeneous transducers: Parameters and considerations for successful implementation

IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Ndt & E International Pub Date : 2024-11-07 DOI:10.1016/j.ndteint.2024.103265
Carlos-Omar Rasgado-Moreno , Panpan Xu , Marek Rist , Madis Ratassepp
{"title":"Optimising full waveform inversion with inhomogeneous transducers: Parameters and considerations for successful implementation","authors":"Carlos-Omar Rasgado-Moreno ,&nbsp;Panpan Xu ,&nbsp;Marek Rist ,&nbsp;Madis Ratassepp","doi":"10.1016/j.ndteint.2024.103265","DOIUrl":null,"url":null,"abstract":"<div><div>Guided wave tomography (GWT) based full waveform inversion (FWI) is an emerging technique for structural health monitoring applications, primarily for plates and pipeline structures. Generally, FWI employs a two-dimensional (2-D) forward model to circumvent the high computational cost associated with the inversion scheme. Consequently, a re-scaling step is implemented to compensate for any potential discrepancies between the 2-D model and the observed data. Druet et al., (2019) introduced the autocalibration method, which utilises the information from the healthy rays to calibrate those rays that pass through the defect. In this method, only the phase information is re-scaled, given that phase information is the dominant factor in FWI. However, overlooking amplitude discrepancies might lead the inversion scheme to become trapped in a local minimum. In this study, we propose to include the amplitude information as well, following the autocalibration method. We use an updated autocalibration method to reconstruct a 100 mm wide defect on an 8 mm thick steel straight pipe with traditional GWT using the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> mode. This novel approach provides a more accurate representation of the defect and avoids becoming trapped in a local minimum, thereby improving the reliability and effectiveness of FWI. Furthermore, we offer guidance for the successful implementation of this method in the presence of inhomogeneous transducers, a common challenge in practical applications.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"149 ","pages":"Article 103265"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524002305","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Guided wave tomography (GWT) based full waveform inversion (FWI) is an emerging technique for structural health monitoring applications, primarily for plates and pipeline structures. Generally, FWI employs a two-dimensional (2-D) forward model to circumvent the high computational cost associated with the inversion scheme. Consequently, a re-scaling step is implemented to compensate for any potential discrepancies between the 2-D model and the observed data. Druet et al., (2019) introduced the autocalibration method, which utilises the information from the healthy rays to calibrate those rays that pass through the defect. In this method, only the phase information is re-scaled, given that phase information is the dominant factor in FWI. However, overlooking amplitude discrepancies might lead the inversion scheme to become trapped in a local minimum. In this study, we propose to include the amplitude information as well, following the autocalibration method. We use an updated autocalibration method to reconstruct a 100 mm wide defect on an 8 mm thick steel straight pipe with traditional GWT using the A0 mode. This novel approach provides a more accurate representation of the defect and avoids becoming trapped in a local minimum, thereby improving the reliability and effectiveness of FWI. Furthermore, we offer guidance for the successful implementation of this method in the presence of inhomogeneous transducers, a common challenge in practical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非均质传感器优化全波形反演:成功实施的参数和注意事项
基于导波层析成像(GWT)的全波形反演(FWI)是一种新兴的结构健康监测应用技术,主要用于板材和管道结构。一般来说,全波形反演采用二维(2-D)前向模型,以规避与反演方案相关的高计算成本。因此,需要执行重新缩放步骤,以补偿二维模型与观测数据之间的任何潜在差异。Druet 等人(2019 年)引入了自动校准方法,利用健康射线的信息来校准穿过缺陷的射线。在这种方法中,考虑到相位信息是 FWI 的主要因素,因此只对相位信息进行了重新标定。然而,忽略振幅差异可能会导致反演方案陷入局部最小值。在本研究中,我们建议按照自动校准方法,将振幅信息也包括在内。我们使用更新的自动校准方法,用传统的 A0 模式 GWT 在 8 毫米厚的钢直管上重建 100 毫米宽的缺陷。这种新方法能更准确地表示缺陷,避免陷入局部最小值,从而提高 FWI 的可靠性和有效性。此外,我们还为在存在不均匀传感器的情况下成功实施这种方法提供了指导,这在实际应用中是一个常见的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ndt & E International
Ndt & E International 工程技术-材料科学:表征与测试
CiteScore
7.20
自引率
9.50%
发文量
121
审稿时长
55 days
期刊介绍: NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.
期刊最新文献
Characterization of heat-treated bearing rings via measurement of electromagnetic properties for pulsed eddy current evaluation Optimising full waveform inversion with inhomogeneous transducers: Parameters and considerations for successful implementation A simplified procedure for evaluation of damage-depth in concrete exposed to high temperature using the impact-echo method Novel fast full-wavefield modeling of air-coupled surface waves and its implications for non-contact pavement testing A novel damage localization method of Circular Phased Array using Minimum Variance Distortionless Response Beamforming with Autocorrelation Matrix Diagonal Loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1