Combinatorial synthesis of AlNi alloys by low-pressure cold spray deposition and post-laser alloying process

IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Surface & Coatings Technology Pub Date : 2024-10-30 DOI:10.1016/j.surfcoat.2024.131542
Tanguy Lacondemine , Beatriz Puga , Rémy Kalmar , Manuel Fendler , Fanny Balbaud
{"title":"Combinatorial synthesis of AlNi alloys by low-pressure cold spray deposition and post-laser alloying process","authors":"Tanguy Lacondemine ,&nbsp;Beatriz Puga ,&nbsp;Rémy Kalmar ,&nbsp;Manuel Fendler ,&nbsp;Fanny Balbaud","doi":"10.1016/j.surfcoat.2024.131542","DOIUrl":null,"url":null,"abstract":"<div><div>Aluminum-Nickel (Al<img>Ni) alloys are of great interest due to their exceptional high-temperature wear and corrosion resistance, making them valuable in transport, energy, and materials processing applications. However, challenges in the production and shaping of these alloys, particularly as thick coatings, remain significant. This study introduces an innovative method for the high-throughput synthesis of Al<img>Ni coatings, utilizing a two-step process: low-pressure cold spray deposition followed by laser surface alloying. The combination of these two techniques not only improves the synthesis process but also opens avenues for exploring new material compositions with specific application requirements. This approach holds significant potential for accelerating the development and optimization of advanced coatings and multiphase compounds in applications such as repair and additive manufacturing.</div><div>Aluminum and nickel powders were co-sprayed to create coatings with controlled compositions ranging from 50Al<img>50Ni to 10Al<img>90Ni (wt%). Subsequent laser treatment induced in-situ alloying and homogenization, resulting in dense, uniform Al<img>Ni coatings. The microstructure and chemical composition were characterized using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS), while X-ray Diffraction (XRD) identified the formation of various phases, including Al<sub>3</sub>Ni and AlNi<sub>3</sub> phases. The process demonstrated effective alloying and microstructural homogeneity, with residual alumina present at the surface. Despite the presence of some microstructural defects, such as cracking, this method provides a robust foundation for further refinement and opens new possibilities for tailoring alloy properties through combinatorial cold spray and laser alloying techniques.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131542"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224011733","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminum-Nickel (AlNi) alloys are of great interest due to their exceptional high-temperature wear and corrosion resistance, making them valuable in transport, energy, and materials processing applications. However, challenges in the production and shaping of these alloys, particularly as thick coatings, remain significant. This study introduces an innovative method for the high-throughput synthesis of AlNi coatings, utilizing a two-step process: low-pressure cold spray deposition followed by laser surface alloying. The combination of these two techniques not only improves the synthesis process but also opens avenues for exploring new material compositions with specific application requirements. This approach holds significant potential for accelerating the development and optimization of advanced coatings and multiphase compounds in applications such as repair and additive manufacturing.
Aluminum and nickel powders were co-sprayed to create coatings with controlled compositions ranging from 50Al50Ni to 10Al90Ni (wt%). Subsequent laser treatment induced in-situ alloying and homogenization, resulting in dense, uniform AlNi coatings. The microstructure and chemical composition were characterized using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS), while X-ray Diffraction (XRD) identified the formation of various phases, including Al3Ni and AlNi3 phases. The process demonstrated effective alloying and microstructural homogeneity, with residual alumina present at the surface. Despite the presence of some microstructural defects, such as cracking, this method provides a robust foundation for further refinement and opens new possibilities for tailoring alloy properties through combinatorial cold spray and laser alloying techniques.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过低压冷喷沉积和激光后合金化工艺组合合成铝镍合金
铝镍(AlNi)合金因其优异的高温耐磨性和耐腐蚀性而备受关注,在运输、能源和材料加工等应用领域具有重要价值。然而,这些合金的生产和成型,尤其是厚涂层的生产和成型,仍然面临着巨大的挑战。本研究介绍了一种高通量合成铝镍涂层的创新方法,该方法采用两步工艺:低压冷喷沉积,然后进行激光表面合金化。这两种技术的结合不仅改进了合成工艺,还为探索具有特定应用要求的新材料成分开辟了途径。铝粉和镍粉被共同喷涂成涂层,可控成分从 50Al50Ni 到 10Al90Ni(重量百分比)不等。随后的激光处理诱导了原位合金化和均匀化,产生了致密、均匀的铝镍涂层。使用扫描电子显微镜(SEM)和能量色散 X 射线光谱(EDS)对微观结构和化学成分进行了表征,而 X 射线衍射(XRD)则确定了各种相的形成,包括 Al3Ni 和 AlNi3 相。该工艺显示了有效的合金化和微观结构的均匀性,表面存在残余氧化铝。尽管存在裂纹等微观结构缺陷,但这种方法为进一步完善提供了坚实的基础,并为通过组合冷喷和激光合金化技术定制合金特性提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
期刊最新文献
Editorial Board Stability-enhanced (Cu-, Zn-)MOFs via (Cu, Zn)S composite strategy: A promising approach for oil-water separation A smart self-healing coating utilizing pH-responsive dual nanocontainers for corrosion protection of aluminum alloy Integrating TiNx to Fe-based amorphous coating by reactive plasma spray for ameliorating multi-scale mechanical behavior and corrosion-abrasion resistance Laser-zoned treatment of magnesium surfaces with predictable degradation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1