{"title":"Molecular displacement approach for the electrochemical detection of protein-bound propofol","authors":"David C. Ferrier, Janice Kiely, Richard Luxton","doi":"10.1016/j.sbsr.2024.100710","DOIUrl":null,"url":null,"abstract":"<div><div>Propofol is one of the principal drugs used for the sedation of patients undergoing mechanical ventilation in intensive care units. The correct dosage of such sedative drugs is highly important, but current methods of determining infusion rates are limited and there is a lack of suitable methods for directly determining patient blood propofol concentrations. A significant challenge for the development of propofol sensors is that propofol demonstrates very high protein binding, leading to a low free fraction in blood. Here we present a method for improving the efficacy of an electrochemical propofol sensor by increasing the free fraction via a molecular displacement approach. When used in conjunction with a carbon nanotube/graphene oxide/iron oxide nanoparticle functionalised screen-printed electrode, it was found that this approach dramatically improved the sensor's sensitivity towards propofol. Ibuprofen was found to be the most effective displacement agent, with an optimal concentration of 30 mM. The resultant sensitivity was 2.82 nA/μg/ml/mm<sup>2</sup> with a coefficient of variation of 0.07, and the limit of detection was 0.2 μg/ml. This approach demonstrates high specificity towards drugs commonly administered to intensive care patients.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100710"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Propofol is one of the principal drugs used for the sedation of patients undergoing mechanical ventilation in intensive care units. The correct dosage of such sedative drugs is highly important, but current methods of determining infusion rates are limited and there is a lack of suitable methods for directly determining patient blood propofol concentrations. A significant challenge for the development of propofol sensors is that propofol demonstrates very high protein binding, leading to a low free fraction in blood. Here we present a method for improving the efficacy of an electrochemical propofol sensor by increasing the free fraction via a molecular displacement approach. When used in conjunction with a carbon nanotube/graphene oxide/iron oxide nanoparticle functionalised screen-printed electrode, it was found that this approach dramatically improved the sensor's sensitivity towards propofol. Ibuprofen was found to be the most effective displacement agent, with an optimal concentration of 30 mM. The resultant sensitivity was 2.82 nA/μg/ml/mm2 with a coefficient of variation of 0.07, and the limit of detection was 0.2 μg/ml. This approach demonstrates high specificity towards drugs commonly administered to intensive care patients.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.