Hanguan Wen , Xiufeng Liu , Bo Lei , Ming Yang , Xu Cheng , Zhe Chen
{"title":"A privacy-preserving heterogeneous federated learning framework with class imbalance learning for electricity theft detection","authors":"Hanguan Wen , Xiufeng Liu , Bo Lei , Ming Yang , Xu Cheng , Zhe Chen","doi":"10.1016/j.apenergy.2024.124789","DOIUrl":null,"url":null,"abstract":"<div><div>Electricity theft is a critical issue in smart grids, leading to significant financial losses for utilities and compromising the stability and reliability of the power system. Existing centralized methods for electricity theft detection raise privacy and security concerns due to the need for sharing sensitive customer data. To address these challenges, we propose HeteroFL, a novel heterogeneous federated learning framework for privacy-preserving electricity theft detection in smart grids. HeteroFL enables retailers to collaboratively train a global model without sharing their private data, while accounting for the class imbalance problem prevalent in electricity theft datasets. We introduce a data partitioning and aggregation scheme that assigns different weights to classes, ensuring a balanced contribution and representation of each class in the global model. In addition, our framework leverages the CKKS homomorphic encryption scheme to perform secure computations on encrypted parameters and employs a CNN-LSTM model to capture the spatial and temporal dependencies in electricity consumption patterns. We evaluate HeteroFL using a real-world smart grid dataset and demonstrate its effectiveness and efficiency in detecting energy theft. Furthermore, we analyze the robustness and perform ablation studies to validate the framework’s stability and identify the contributions of its key components. Although the impact of approximation errors introduced by the CKKS scheme on the CNN-LSTM model’s performance requires further investigation, our framework presents a promising solution for privacy-preserving and accurate electricity theft detection in smart grids using heterogeneous federated learning.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"378 ","pages":"Article 124789"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030626192402172X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Electricity theft is a critical issue in smart grids, leading to significant financial losses for utilities and compromising the stability and reliability of the power system. Existing centralized methods for electricity theft detection raise privacy and security concerns due to the need for sharing sensitive customer data. To address these challenges, we propose HeteroFL, a novel heterogeneous federated learning framework for privacy-preserving electricity theft detection in smart grids. HeteroFL enables retailers to collaboratively train a global model without sharing their private data, while accounting for the class imbalance problem prevalent in electricity theft datasets. We introduce a data partitioning and aggregation scheme that assigns different weights to classes, ensuring a balanced contribution and representation of each class in the global model. In addition, our framework leverages the CKKS homomorphic encryption scheme to perform secure computations on encrypted parameters and employs a CNN-LSTM model to capture the spatial and temporal dependencies in electricity consumption patterns. We evaluate HeteroFL using a real-world smart grid dataset and demonstrate its effectiveness and efficiency in detecting energy theft. Furthermore, we analyze the robustness and perform ablation studies to validate the framework’s stability and identify the contributions of its key components. Although the impact of approximation errors introduced by the CKKS scheme on the CNN-LSTM model’s performance requires further investigation, our framework presents a promising solution for privacy-preserving and accurate electricity theft detection in smart grids using heterogeneous federated learning.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.