Irida-graphene: A new two-dimensional electrode material for sodium-ion batteries

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-11-15 DOI:10.1016/j.est.2024.114456
Manpreet Kaur, Nidhi Duhan, T.J. Dhilip Kumar
{"title":"Irida-graphene: A new two-dimensional electrode material for sodium-ion batteries","authors":"Manpreet Kaur,&nbsp;Nidhi Duhan,&nbsp;T.J. Dhilip Kumar","doi":"10.1016/j.est.2024.114456","DOIUrl":null,"url":null,"abstract":"<div><div>The effectiveness of the irida-graphene monolayer for ion storage in sodium-ion batteries (SIBs) is evaluated using density functional theory. The nanolayer possesses a stable structure both dynamically and thermally, along with dependable mechanical properties. The density of states and band structure computations confirmed the excellent conductivity of the monolayer. The storage capacity and energy density have been assessed at 1116.7 mAhg<sup>−1</sup>, and 2854.9 mWhg<sup>−1</sup> respectively, for Na-ion batteries. Additionally, the small energy barrier of 0.079 eV and heightened diffusion rate of 2.83 x 10<sup>−4</sup> cm<sup>2</sup>s<sup>−1</sup> for Na ions indicate their easy migration across the surface of the nanolayer during the complete cycle. Furthermore, the open circuit voltage obtained 0.15 V for SIBs, is consistent with the commercial design requirements. Based on the theoretical investigation, irida-graphene clearly demonstrates excellent potential as a superior electrode for next-generation SIBs.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114456"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24040428","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The effectiveness of the irida-graphene monolayer for ion storage in sodium-ion batteries (SIBs) is evaluated using density functional theory. The nanolayer possesses a stable structure both dynamically and thermally, along with dependable mechanical properties. The density of states and band structure computations confirmed the excellent conductivity of the monolayer. The storage capacity and energy density have been assessed at 1116.7 mAhg−1, and 2854.9 mWhg−1 respectively, for Na-ion batteries. Additionally, the small energy barrier of 0.079 eV and heightened diffusion rate of 2.83 x 10−4 cm2s−1 for Na ions indicate their easy migration across the surface of the nanolayer during the complete cycle. Furthermore, the open circuit voltage obtained 0.15 V for SIBs, is consistent with the commercial design requirements. Based on the theoretical investigation, irida-graphene clearly demonstrates excellent potential as a superior electrode for next-generation SIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铱-石墨烯:钠离子电池的新型二维电极材料
利用密度泛函理论评估了铱-石墨烯单层在钠离子电池(SIB)中存储离子的有效性。该纳米层具有稳定的动态和热结构,以及可靠的机械性能。态密度和带状结构计算证实了单层的优异导电性。经评估,瑙离子电池的存储容量和能量密度分别为 1116.7 mAhg-1 和 2854.9 mWhg-1。此外,Na 离子的能垒(0.079 eV)较小,扩散速率(2.83 x 10-4 cm2s-1)较高,这表明它们在整个循环过程中很容易在纳米层表面迁移。此外,SIB 的开路电压为 0.15 V,符合商业设计要求。根据理论研究,铱石墨烯显然具有作为下一代 SIB 优异电极的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Tailoring hydrogen-bond networks in NaCH₃COO·3H₂O phase change materials: Lotus root starch and carbon nanofiber synergy toward efficient thermal storage Graphene-enhanced thermally flexible polyethylene glycol-based phase change materials for thermal energy storage and management Enhanced harmonic reduction and energy optimization in grid-connected photovoltaic-battery systems for improved power quality Iron–nitrogen-doped eggshell carbon microsphere-encapsulated hollow nanoparticle catalysts for enhanced oxygen reduction reaction in zinc–air batteries Hydrofluoric acid free synthesis of Ti3C2Tx-Fe3O4 composite anode coupled with high voltage NaxMn3O7 cathode for 2.2 V supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1