Intrinsic Poly-Si layer thickness: Its role in pinhole contact formation and interface passivation in poly-silicon on oxide solar cells

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-11-08 DOI:10.1016/j.solmat.2024.113276
Dongjin Choi , Haejung Lee , Dongkyun Kang , Hoyoung Song , MyeongSeob Sim , Yerin Lee , Youngho Choe , Yoonmook Kang , Donghwan Kim , Hae-Seok Lee
{"title":"Intrinsic Poly-Si layer thickness: Its role in pinhole contact formation and interface passivation in poly-silicon on oxide solar cells","authors":"Dongjin Choi ,&nbsp;Haejung Lee ,&nbsp;Dongkyun Kang ,&nbsp;Hoyoung Song ,&nbsp;MyeongSeob Sim ,&nbsp;Yerin Lee ,&nbsp;Youngho Choe ,&nbsp;Yoonmook Kang ,&nbsp;Donghwan Kim ,&nbsp;Hae-Seok Lee","doi":"10.1016/j.solmat.2024.113276","DOIUrl":null,"url":null,"abstract":"<div><div>Tunnel oxide passivating contact (TOPCon) solar cells are characterized by high surface passivation and electrical transport efficiency due to the chemical passivation and field effect of the tunnel oxide and doped poly-silicon layers, respectively. Nevertheless, the passivation quality, implied open-circuit voltage (iV<sub>oc</sub>), and device lifetime are adversely affected by high-temperature processing, leading to Auger recombination and pinhole defects in the tunnel oxide layer. This study aimed to explore the introduction of intrinsic poly-silicon as an interlayer to improve thermal stability and assesses its effect on the passivation of the tunnel oxide interface. Findings indicate that an intrinsic poly-silicon interlayer with a minimum thickness of 18 nm prevents passivation degradation at elevated temperatures. Additionally, the incorporation of this interlayer facilitates the tuning of the doping profile in crystalline silicon, resulting in a diminished pinhole density and an enhanced iV<sub>oc</sub> of 714.9 mV. These results advance our understanding of TOPCon solar cell performance and provide a foundation for their further optimization.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"279 ","pages":"Article 113276"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005889","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Tunnel oxide passivating contact (TOPCon) solar cells are characterized by high surface passivation and electrical transport efficiency due to the chemical passivation and field effect of the tunnel oxide and doped poly-silicon layers, respectively. Nevertheless, the passivation quality, implied open-circuit voltage (iVoc), and device lifetime are adversely affected by high-temperature processing, leading to Auger recombination and pinhole defects in the tunnel oxide layer. This study aimed to explore the introduction of intrinsic poly-silicon as an interlayer to improve thermal stability and assesses its effect on the passivation of the tunnel oxide interface. Findings indicate that an intrinsic poly-silicon interlayer with a minimum thickness of 18 nm prevents passivation degradation at elevated temperatures. Additionally, the incorporation of this interlayer facilitates the tuning of the doping profile in crystalline silicon, resulting in a diminished pinhole density and an enhanced iVoc of 714.9 mV. These results advance our understanding of TOPCon solar cell performance and provide a foundation for their further optimization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本征多晶硅层厚度:多晶硅氧化物太阳能电池中针孔接触形成和界面钝化的作用
由于隧道氧化物和掺杂多晶硅层的化学钝化和场效应,隧道氧化物钝化接触(TOPCon)太阳能电池具有表面钝化和电传输效率高的特点。然而,钝化质量、隐含开路电压(iVoc)和器件寿命会受到高温加工的不利影响,导致隧道氧化层出现奥杰尔重组和针孔缺陷。本研究旨在探索引入本征多晶硅作为中间层以提高热稳定性,并评估其对隧道氧化物界面钝化的影响。研究结果表明,最小厚度为 18 纳米的本征多晶硅中间层可防止高温下的钝化降解。此外,这种中间膜的加入还有助于调整晶体硅中的掺杂曲线,从而降低针孔密度并增强 714.9 mV 的 iVoc。这些结果增进了我们对 TOPCon 太阳能电池性能的了解,并为进一步优化这些电池奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Oxide-nitride nanolayer stacks for enhanced passivation of p-type surfaces in silicon solar cells Accurately quantifying the recombination pathways unique in back contact solar cells Analyzing the effectiveness of various coatings to mitigate photovoltaic modules soiling in desert climate Solar energy harvester based on polarization insensitive and wide angle stable UWB absorber for UV, visible and IR frequency range Experimental evaluation of photovoltaic thermal (PVT) system using a modular heat collector with flat back shape fins, pipe, nanofluids and phase change material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1