Abera D. Ambaye , Sithembela A. Zikalala , Karabo C. Mashiloane , Jemal F. Nure , Mesfin A. Kebede , Touhami Mokrani , Edward N. Nxumalo
{"title":"Development of engineered Zn-MOF/g-C3N4 based photoelectrochemical system for real-time sensors and removal of naproxen in wastewater","authors":"Abera D. Ambaye , Sithembela A. Zikalala , Karabo C. Mashiloane , Jemal F. Nure , Mesfin A. Kebede , Touhami Mokrani , Edward N. Nxumalo","doi":"10.1016/j.talo.2024.100371","DOIUrl":null,"url":null,"abstract":"<div><div>Naproxen-contaminated water may lead to the accumulation of the drug in aquatic organisms and can pose high risks to an aquatic environment and human beings. Therefore, this work aimed to develop photoelectrochemical sensing and degradation of naproxen (NPX) using zinc-metal organic framework /graphitic carbon nitride thin film-based fluorine-doped tin oxide (Zn-MOF/g-C<sub>3</sub>N<sub>4</sub>/FTO) as anode material for the sensing and degradation of naproxen (NPX). The surface morphology, structure, surface property, surface area, optical property, photocurrent, and charge transfer kinetics abilities were studied using different techniques. The nanocomposites showed a superior photocurrent response (0.815 mA cm<sup>-2</sup>) compared to the original g-C<sub>3</sub>N<sub>4</sub> (0.328 mA cm<sup>-2</sup>). The photo-anode made of Zn-MOF@g-C<sub>3</sub>N<sub>4</sub>/FTO displayed the highest photocurrent value, indicating that the alignment of the two semiconductor bands prevented the quick recombination of electron-hole pairs. Owing to these attractive features, the Zn-MOF/g-C<sub>3</sub>N<sub>4</sub>/FTO electrode was applied for photoelectrochemical detection of NPX using chronoamperometry. Interestingly, the nanocomposites-based FTO ascribed a lower detection limit (2.3 ng <span>l</span><sup>-1</sup>) with a wide linear range concentration of NPX (0.5 to 200 µg <span>l</span><sup>-1</sup>). Additionally, the analytical assessment of repeatability and reproducibility demonstrated robust performance, with commendable relative standard deviations (RSD%) of 2.54 % and 2.40 %, respectively. On the other hand, a remarkable degradation efficiency of 97.52 % was attained when employing a bias potential of 0.1 V during a 2 h photoelectrocatalytic oxidation of NPX. The degradation process was primarily driven by the active participation of holes and hydroxyl radicals in ring opening and subsequent cleavage of by-products. The notable effectiveness of this degradation can be attributed to the combined and synergistic effects of both electrochemical and photocatalytic degradation techniques. The current state demonstrates its effectiveness in the photoelectrochemical sensing and removal of NPX using MOF/g-C<sub>3</sub>N<sub>4</sub> nanocomposites-based electrode materials in wastewater.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"10 ","pages":"Article 100371"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831924000857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Naproxen-contaminated water may lead to the accumulation of the drug in aquatic organisms and can pose high risks to an aquatic environment and human beings. Therefore, this work aimed to develop photoelectrochemical sensing and degradation of naproxen (NPX) using zinc-metal organic framework /graphitic carbon nitride thin film-based fluorine-doped tin oxide (Zn-MOF/g-C3N4/FTO) as anode material for the sensing and degradation of naproxen (NPX). The surface morphology, structure, surface property, surface area, optical property, photocurrent, and charge transfer kinetics abilities were studied using different techniques. The nanocomposites showed a superior photocurrent response (0.815 mA cm-2) compared to the original g-C3N4 (0.328 mA cm-2). The photo-anode made of Zn-MOF@g-C3N4/FTO displayed the highest photocurrent value, indicating that the alignment of the two semiconductor bands prevented the quick recombination of electron-hole pairs. Owing to these attractive features, the Zn-MOF/g-C3N4/FTO electrode was applied for photoelectrochemical detection of NPX using chronoamperometry. Interestingly, the nanocomposites-based FTO ascribed a lower detection limit (2.3 ng l-1) with a wide linear range concentration of NPX (0.5 to 200 µg l-1). Additionally, the analytical assessment of repeatability and reproducibility demonstrated robust performance, with commendable relative standard deviations (RSD%) of 2.54 % and 2.40 %, respectively. On the other hand, a remarkable degradation efficiency of 97.52 % was attained when employing a bias potential of 0.1 V during a 2 h photoelectrocatalytic oxidation of NPX. The degradation process was primarily driven by the active participation of holes and hydroxyl radicals in ring opening and subsequent cleavage of by-products. The notable effectiveness of this degradation can be attributed to the combined and synergistic effects of both electrochemical and photocatalytic degradation techniques. The current state demonstrates its effectiveness in the photoelectrochemical sensing and removal of NPX using MOF/g-C3N4 nanocomposites-based electrode materials in wastewater.