Modulated synthesis of nickel copper bimetallic compounds by ammonium fluoride-based complex as novel active materials of battery supercapacitor hybrids
Tsung-Rong Kuo , Muhammad Saukani , Dong-Ching Chieh , Yu-Cheng Cao , Pin-Yan Lee , Chutima Kongvarhodom , Sibidou Yougbaré , Hung-Ming Chen , Kuo-Chuan Ho , Lu-Yin Lin
{"title":"Modulated synthesis of nickel copper bimetallic compounds by ammonium fluoride-based complex as novel active materials of battery supercapacitor hybrids","authors":"Tsung-Rong Kuo , Muhammad Saukani , Dong-Ching Chieh , Yu-Cheng Cao , Pin-Yan Lee , Chutima Kongvarhodom , Sibidou Yougbaré , Hung-Ming Chen , Kuo-Chuan Ho , Lu-Yin Lin","doi":"10.1016/j.est.2024.114567","DOIUrl":null,"url":null,"abstract":"<div><div>Bimetallic compounds have attracted much attention as efficient active materials of battery supercapacitor hybrid (BSH), owing to their multiple redox states, high electrical conductivity, and simply synthesis process. Nickel-based compounds offer high theoretical capacities, while copper-based compounds provide high electrical conductivity. The energy storage performance can be further enhanced designing favorable morphologies, which can be influenced by the incorporation of structure directing agents (SDAs) such as NH<sub>4</sub>BF<sub>4</sub> and NH<sub>4</sub>HF<sub>2</sub>. In this study, nickel and copper bimetallic compounds are synthesized as active materials of BSHs in a novel environment containing metal salts, NH<sub>4</sub>BF<sub>4</sub>, NH<sub>4</sub>HF<sub>2</sub>, and 2-methylmidozole. The effects of the Cu to Ni ratio on material and electrochemical properties are investigated. To enhance the electrochemical contributions of nickel, which has higher theoretical capacities, the reaction time for copper ions is reduced. The optimal bimetallic (CuNi13) electrode achieves the highest specific capacitance (C<sub>F</sub>) of 1758.0 F/g, corresponding to a capacity of 791.1C/g at 1 A/g, due to the higher nickel content and smaller sheet sizes. The BSH assembled using the CuNi13 and reduced graphene oxide electrodes demonstrates a maximum energy density of 109.1 Wh/kg at 1071 kW/kg. The C<sub>F</sub> retention of 85.5% and Coulombic efficiency of 93.6% are also maintained after 10,000 cycles.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114567"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24041537","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Bimetallic compounds have attracted much attention as efficient active materials of battery supercapacitor hybrid (BSH), owing to their multiple redox states, high electrical conductivity, and simply synthesis process. Nickel-based compounds offer high theoretical capacities, while copper-based compounds provide high electrical conductivity. The energy storage performance can be further enhanced designing favorable morphologies, which can be influenced by the incorporation of structure directing agents (SDAs) such as NH4BF4 and NH4HF2. In this study, nickel and copper bimetallic compounds are synthesized as active materials of BSHs in a novel environment containing metal salts, NH4BF4, NH4HF2, and 2-methylmidozole. The effects of the Cu to Ni ratio on material and electrochemical properties are investigated. To enhance the electrochemical contributions of nickel, which has higher theoretical capacities, the reaction time for copper ions is reduced. The optimal bimetallic (CuNi13) electrode achieves the highest specific capacitance (CF) of 1758.0 F/g, corresponding to a capacity of 791.1C/g at 1 A/g, due to the higher nickel content and smaller sheet sizes. The BSH assembled using the CuNi13 and reduced graphene oxide electrodes demonstrates a maximum energy density of 109.1 Wh/kg at 1071 kW/kg. The CF retention of 85.5% and Coulombic efficiency of 93.6% are also maintained after 10,000 cycles.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.