Broadband efficient light-absorbing SS-PPy@CNT membranes prepared by electrochemical deposition for photothermal conversion

IF 9 1区 工程技术 Q1 ENERGY & FUELS Renewable Energy Pub Date : 2024-11-16 DOI:10.1016/j.renene.2024.121926
Mengyan Liu , Benfeng Zhu , Na Chen , Jie Zhu , Caihe Lei , Ruopeng Li , Yumeng Yang , Jiao Liu , Zhao Zhang , Peixia Yang , Oleg Levin , Elena Alekseeva , Bo Fang , Guoying Wei , Jingjing Yang
{"title":"Broadband efficient light-absorbing SS-PPy@CNT membranes prepared by electrochemical deposition for photothermal conversion","authors":"Mengyan Liu ,&nbsp;Benfeng Zhu ,&nbsp;Na Chen ,&nbsp;Jie Zhu ,&nbsp;Caihe Lei ,&nbsp;Ruopeng Li ,&nbsp;Yumeng Yang ,&nbsp;Jiao Liu ,&nbsp;Zhao Zhang ,&nbsp;Peixia Yang ,&nbsp;Oleg Levin ,&nbsp;Elena Alekseeva ,&nbsp;Bo Fang ,&nbsp;Guoying Wei ,&nbsp;Jingjing Yang","doi":"10.1016/j.renene.2024.121926","DOIUrl":null,"url":null,"abstract":"<div><div>Solar energy is an eco-conscious substitute, for solar energy absorption and subsequent light-to-heat conversion, light-absorbing materials require broad-spectrum light absorption capabilities. Herein, we present the fabrication of broadband light-absorbing polypyrrole-carboxylated carbon nanotube membranes via a facile electrochemical deposition route. By manipulating electrochemical deposition time, the structure of the membranes was tailored, resulting in enhanced absorption, achieving over 98.95 % across the entire solar spectrum. The membranes demonstrated exemplary thermal efficacy and insensitivity to incident angles in photothermal conversion, the membranes facilitated a notable 12 °C temperature elevation within a simulated greenhouse compared to ambient conditions. Thus, these membranes exhibit considerable potential for widespread application in photothermal conversion and greenhouse technology.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121926"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124019943","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Solar energy is an eco-conscious substitute, for solar energy absorption and subsequent light-to-heat conversion, light-absorbing materials require broad-spectrum light absorption capabilities. Herein, we present the fabrication of broadband light-absorbing polypyrrole-carboxylated carbon nanotube membranes via a facile electrochemical deposition route. By manipulating electrochemical deposition time, the structure of the membranes was tailored, resulting in enhanced absorption, achieving over 98.95 % across the entire solar spectrum. The membranes demonstrated exemplary thermal efficacy and insensitivity to incident angles in photothermal conversion, the membranes facilitated a notable 12 °C temperature elevation within a simulated greenhouse compared to ambient conditions. Thus, these membranes exhibit considerable potential for widespread application in photothermal conversion and greenhouse technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过电化学沉积制备宽带高效光吸收 SS-PPy@CNT 膜,用于光热转换
太阳能是一种具有环保意识的替代能源,为了吸收太阳能并将其转化为热能,光吸收材料需要具有宽光谱的光吸收能力。在此,我们介绍了通过简便的电化学沉积路线制备宽光谱光吸收聚吡咯-羧基碳纳米管膜的方法。通过操纵电化学沉积时间,对膜的结构进行了定制,从而增强了吸收能力,在整个太阳光谱范围内的吸收率超过 98.95%。在光热转换过程中,薄膜表现出了出色的热效率和对入射角度的不敏感性,与环境条件相比,薄膜使模拟温室内的温度明显升高了 12 °C。因此,这些膜在光热转换和温室技术的广泛应用方面具有相当大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
期刊最新文献
Broadband efficient light-absorbing SS-PPy@CNT membranes prepared by electrochemical deposition for photothermal conversion Multi-objective optimization of geothermal heating systems based on thermal economy and environmental impact evaluation Dynamic response and power performance of a combined semi-submersible floating wind turbine and point absorber wave energy converter array Rural energy poverty alleviation in OECD nations: An integrated analysis of renewable energy, green taxation, and the United Nations agenda 2030 Spectral correction of photovoltaic module electrical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1