Shuo Zhang , Huiming Zou , Mingsheng Tang , Fanchen Kong , Wencong Shao , Zhouhang Hu
{"title":"Study on the friction characteristics of a self-lubricating linear compressor using vapor injection","authors":"Shuo Zhang , Huiming Zou , Mingsheng Tang , Fanchen Kong , Wencong Shao , Zhouhang Hu","doi":"10.1016/j.ijrefrig.2024.10.014","DOIUrl":null,"url":null,"abstract":"<div><div>The self-lubricating linear compressor with aerostatic bearings has good prospect for the scenario which has difficulties of oil returning. This study presents a novel oil-free linear compressor and establishes a frictional damping model by using equivalent circuit approach to evaluate the mechanical performance of the compressor. The changes in friction damping characteristics of VISLLC under different piston strokes and injection pressure are analyzed. The flow resistance coefficients within the porous medium and gas gap are obtained by experimental tests and modeling analysis. Simulation results indicate that the equivalent frictional damping coefficient can be reduced by 36.1 % comparing with that of the non-injection and the efficiency can improved the by 17.2 %. The frictional damping coefficient in the porous bearing thickness of 0.9 mm at 600 kPa injection pressure is 3.64 N·s·m<sup>−1</sup>.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"169 ","pages":"Pages 294-307"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724003529","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The self-lubricating linear compressor with aerostatic bearings has good prospect for the scenario which has difficulties of oil returning. This study presents a novel oil-free linear compressor and establishes a frictional damping model by using equivalent circuit approach to evaluate the mechanical performance of the compressor. The changes in friction damping characteristics of VISLLC under different piston strokes and injection pressure are analyzed. The flow resistance coefficients within the porous medium and gas gap are obtained by experimental tests and modeling analysis. Simulation results indicate that the equivalent frictional damping coefficient can be reduced by 36.1 % comparing with that of the non-injection and the efficiency can improved the by 17.2 %. The frictional damping coefficient in the porous bearing thickness of 0.9 mm at 600 kPa injection pressure is 3.64 N·s·m−1.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.