{"title":"One-pot synthesis of graphene nanosheets‑nickel cobalt LDHs nanocomposite for electrocatalysis of oxygen evolution reaction","authors":"Masoud Moradi , Shahram Ghasemi , Farimah Mousavi","doi":"10.1016/j.diamond.2024.111738","DOIUrl":null,"url":null,"abstract":"<div><div>Oxygen evolution reaction (OER) is known as a bottleneck for the overall water-splitting process due to its slow kinetics. In this regard, constructing a high-performance, cost-effective electrode material may act as a game changer. Here, a 2D/2D nanocomposite has prepared out of graphene nanosheets and nickel‑cobalt layered double hydroxide (NiCo LDH) by a simple solvothermal method. The 2D flower-like structures of NiCo LDH attached to graphene nanosheets have observed in field-emission scanning (FE-SEM) and transmission (TEM) electron microscopy images. The X-ray diffraction (XRD) patterns have revealed the formation of Ni(OH)<sub>2</sub> and Co(OH)<sub>2</sub> lattices along with hexagonal graphene crystals. The energy-dispersive X-ray spectroscopy (EDS) has noted the 2.2:1 ratio of nickel to cobalt in the graphene/NiCo LDH nanocomposite. X-ray elemental maps have shown the uniform distribution of elements in the sample, and the corresponding functional groups have observed in the Fourier-transform infrared (FTIR) and Raman spectra. X-ray photoelectron spectroscopy (XPS) has determined the coexistence of divalent and trivalent metals in the nanocomposite. The N<sub>2</sub> adsorption-desorption study has shown signs of slit-shaped ion-accessible micro and mesopores with high specific surface area for the nanocomposite. It has benefited the ion diffusion process during the exposure of the modified electrode to the electrolyte. The graphene/NiCo LDH nanocomposite has provided the onset potential of 1.56 V, overpotential of 338 mV at 10 mA cm<sup>−2</sup>, Tafel slope of 69 mV dec<sup>−1</sup>, charge-transfer resistance (R<sub>ct</sub>) of 27 Ω, double layer capacitance (C<sub>dl</sub>) of 24 μF, electrochemically active surface area (ECSA) of 0.6 cm<sup>2</sup>, and roughness factor (RF) of 20. The electrode has maintained 98.3 % of its initial signal after 10 h continuous measurement at OER potential. This electrocatalytic activity refers to the sheet-like morphology, effective hydroxide ion transfer through interlayer spaces, enhanced conductivity, and high chemical stability achieved by a constructive synergy between graphene nanosheets and NiCo LDH.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111738"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009518","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Oxygen evolution reaction (OER) is known as a bottleneck for the overall water-splitting process due to its slow kinetics. In this regard, constructing a high-performance, cost-effective electrode material may act as a game changer. Here, a 2D/2D nanocomposite has prepared out of graphene nanosheets and nickel‑cobalt layered double hydroxide (NiCo LDH) by a simple solvothermal method. The 2D flower-like structures of NiCo LDH attached to graphene nanosheets have observed in field-emission scanning (FE-SEM) and transmission (TEM) electron microscopy images. The X-ray diffraction (XRD) patterns have revealed the formation of Ni(OH)2 and Co(OH)2 lattices along with hexagonal graphene crystals. The energy-dispersive X-ray spectroscopy (EDS) has noted the 2.2:1 ratio of nickel to cobalt in the graphene/NiCo LDH nanocomposite. X-ray elemental maps have shown the uniform distribution of elements in the sample, and the corresponding functional groups have observed in the Fourier-transform infrared (FTIR) and Raman spectra. X-ray photoelectron spectroscopy (XPS) has determined the coexistence of divalent and trivalent metals in the nanocomposite. The N2 adsorption-desorption study has shown signs of slit-shaped ion-accessible micro and mesopores with high specific surface area for the nanocomposite. It has benefited the ion diffusion process during the exposure of the modified electrode to the electrolyte. The graphene/NiCo LDH nanocomposite has provided the onset potential of 1.56 V, overpotential of 338 mV at 10 mA cm−2, Tafel slope of 69 mV dec−1, charge-transfer resistance (Rct) of 27 Ω, double layer capacitance (Cdl) of 24 μF, electrochemically active surface area (ECSA) of 0.6 cm2, and roughness factor (RF) of 20. The electrode has maintained 98.3 % of its initial signal after 10 h continuous measurement at OER potential. This electrocatalytic activity refers to the sheet-like morphology, effective hydroxide ion transfer through interlayer spaces, enhanced conductivity, and high chemical stability achieved by a constructive synergy between graphene nanosheets and NiCo LDH.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.