Zhiqi Wang , Tiannan Man , Zhisheng Nong, Chunyang Jia, Keming Ma, Baichen Wang, Yue Xing, Shaowei Lu
{"title":"Preparation and performances of conductive, wear-resistant, and anti-corrosion coatings based on low content monodisperse SWCNTs","authors":"Zhiqi Wang , Tiannan Man , Zhisheng Nong, Chunyang Jia, Keming Ma, Baichen Wang, Yue Xing, Shaowei Lu","doi":"10.1016/j.diamond.2024.111694","DOIUrl":null,"url":null,"abstract":"<div><div>Single-walled carbon nanotubes (SWCNTs) are considered an ideal candidate material for multifunctional coatings because of their excellent electrical, thermal and mechanical properties. However, achieving uniform dispersion of SWCNTs while maintaining their structure and performance remains a significant challenge. The monodisperse SWCNTs (m-SWCNTs) can be obtained using a non-covalent PVP dispersant under the graded homogenization method. PVP acted as steric hindrance due to the π-π conjugate, thereby hindering the agglomeration and preventing the damage of SWCNTs. We incorporate low amounts of m-SWCNTs into fluorocarbon (FC) coatings to fabricate m-SWCNTs/FC composite coatings. We also investigate the effect of m-SWCNTs content on the electrical conductivity, corrosion resistance and wear resistance of the composite coating. Our results indicate that when the content of m-SWCNTs reaches at 0.25 wt%, the electrical resistivity of the m-SWCNTs/FC composite coating is 1.67 × 10<sup>−2</sup> Ωm, significantly decreased by 9 orders of magnitude compared to FC coating. The conductive network would be formed by the high aspect ratio and non-damaged of m-SWCNTs to improve the conductivity. Additionally, the wear rate containing 0.15 wt% m-SWCNTs decreased by 50.1 % due to the improved strength and heat conduction to inhibit the adhesive wear. Furthermore, in comparison to bare steel, the corrosion current density of 0.15 wt% m-SWCNTs/FC composite coating is reduced by two orders of magnitude due to zigzag the corrosive path. Our studies suggest that the m-SWCNTs/FC composite coatings have a broad prospect in preparing large-scale, high-performance, and low-cost functional coatings.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111694"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009075","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Single-walled carbon nanotubes (SWCNTs) are considered an ideal candidate material for multifunctional coatings because of their excellent electrical, thermal and mechanical properties. However, achieving uniform dispersion of SWCNTs while maintaining their structure and performance remains a significant challenge. The monodisperse SWCNTs (m-SWCNTs) can be obtained using a non-covalent PVP dispersant under the graded homogenization method. PVP acted as steric hindrance due to the π-π conjugate, thereby hindering the agglomeration and preventing the damage of SWCNTs. We incorporate low amounts of m-SWCNTs into fluorocarbon (FC) coatings to fabricate m-SWCNTs/FC composite coatings. We also investigate the effect of m-SWCNTs content on the electrical conductivity, corrosion resistance and wear resistance of the composite coating. Our results indicate that when the content of m-SWCNTs reaches at 0.25 wt%, the electrical resistivity of the m-SWCNTs/FC composite coating is 1.67 × 10−2 Ωm, significantly decreased by 9 orders of magnitude compared to FC coating. The conductive network would be formed by the high aspect ratio and non-damaged of m-SWCNTs to improve the conductivity. Additionally, the wear rate containing 0.15 wt% m-SWCNTs decreased by 50.1 % due to the improved strength and heat conduction to inhibit the adhesive wear. Furthermore, in comparison to bare steel, the corrosion current density of 0.15 wt% m-SWCNTs/FC composite coating is reduced by two orders of magnitude due to zigzag the corrosive path. Our studies suggest that the m-SWCNTs/FC composite coatings have a broad prospect in preparing large-scale, high-performance, and low-cost functional coatings.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.