Kashinath Lellala , Subhendu Kumar Behera , Prarthana Srivastava , Waseem Sharaf Saeed , Ahmed S. Haidyrah , Ajay N. Burile
{"title":"Fe3O4 nanoparticles decorated on N-doped graphene oxide nanosheets for elimination of heavy metals from industrial wastewater and desulfurization","authors":"Kashinath Lellala , Subhendu Kumar Behera , Prarthana Srivastava , Waseem Sharaf Saeed , Ahmed S. Haidyrah , Ajay N. Burile","doi":"10.1016/j.diamond.2024.111746","DOIUrl":null,"url":null,"abstract":"<div><div>Finding an effective and excellent pertinent single catalyst material for multipurpose application for the purification of hydrocarbons in fuels (desulfurization), and for efficient removal of heavy metals from industrial effluent is greatly endowed. In the present work, a hybrid nanocomposite of ultrafine magnetite (Fe<sub>3</sub>O<sub>4</sub>) nanoparticle embedded on the surface of <em>in-situ</em> nitrogen doped layered GO (NGO) sheets were fabricated by sol-gel method and treatment with microwave irradiation technique is reported for the first time. The results show a high removal efficiency of 97 % for multiple heavy metals (Pb<sup>2+</sup>, Cd<sup>2+</sup>, Cu<sup>2+</sup>, Cr<sup>+2</sup>, Mn<sup>+2</sup> <em>etc.</em>) in industrial effluent and as well as in synthetic water with a very good retention performance of 99 %. The composites were tested against the elimination of sulfur from thiophene is 1.495 mmol g<sup>−1</sup> is reported high is due to coupling and coordination of nitrogen with Fe<img>O and C. Recycling studies showed that the developed composites had excellent recyclability, with <82 % removal at the 5th cycle; its feasibility was evaluated using industrial effluent water and in synthetic water. Surface phenomena studies presented here revealed that the adsorptive removal processes of heavy metals involved π electron donor-acceptor interactions, ion exchange, and electrostatic interactions, along with surface complexation that showed an excellent synergism. A high stability, and retention performance is better than the pure Fe<sub>3</sub>O<sub>4</sub> and NGO sheets. We hope that this study will motivate and give further scope for scientists working on magnetite-based graphene nanocomposites.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111746"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009592","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Finding an effective and excellent pertinent single catalyst material for multipurpose application for the purification of hydrocarbons in fuels (desulfurization), and for efficient removal of heavy metals from industrial effluent is greatly endowed. In the present work, a hybrid nanocomposite of ultrafine magnetite (Fe3O4) nanoparticle embedded on the surface of in-situ nitrogen doped layered GO (NGO) sheets were fabricated by sol-gel method and treatment with microwave irradiation technique is reported for the first time. The results show a high removal efficiency of 97 % for multiple heavy metals (Pb2+, Cd2+, Cu2+, Cr+2, Mn+2etc.) in industrial effluent and as well as in synthetic water with a very good retention performance of 99 %. The composites were tested against the elimination of sulfur from thiophene is 1.495 mmol g−1 is reported high is due to coupling and coordination of nitrogen with FeO and C. Recycling studies showed that the developed composites had excellent recyclability, with <82 % removal at the 5th cycle; its feasibility was evaluated using industrial effluent water and in synthetic water. Surface phenomena studies presented here revealed that the adsorptive removal processes of heavy metals involved π electron donor-acceptor interactions, ion exchange, and electrostatic interactions, along with surface complexation that showed an excellent synergism. A high stability, and retention performance is better than the pure Fe3O4 and NGO sheets. We hope that this study will motivate and give further scope for scientists working on magnetite-based graphene nanocomposites.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.