Investigation of structural, thermal, and electrical properties of sodium-doped oxynitride glass-ceramics

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2024-11-10 DOI:10.1016/j.matchemphys.2024.130139
Natalia Anna Wójcik , Abbas Saeed Hakeem , Zuzanna Mielke , Sharafat Ali
{"title":"Investigation of structural, thermal, and electrical properties of sodium-doped oxynitride glass-ceramics","authors":"Natalia Anna Wójcik ,&nbsp;Abbas Saeed Hakeem ,&nbsp;Zuzanna Mielke ,&nbsp;Sharafat Ali","doi":"10.1016/j.matchemphys.2024.130139","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to investigate the influence of Na<sub>2</sub>O addition on the structural, thermal, and electrical characteristics of oxynitride glass-ceramics within the Na–K–Mg–Ca–Al–Si–O–N system. Oxynitride glass-ceramic samples were prepared via spark plasma sintering (SPS) with sodium oxide doping levels ranging from 0 wt% to 12 wt%. FESEM analysis revealed changes in sample morphology with increasing sodium content, indicating the formation of granular structures and sodium-rich clusters in the glass matrix. XRD revealed the presence of nanocrystalline phases in doped samples, primarily (Na,Ca)(Si,Al)<sub>4</sub>O<sub>8</sub>. IR spectroscopy demonstrated changes in the glass network structure due to sodium, affecting both silicate and aluminum units. Increasing sodium content led to higher crystallinity and a corresponding decrease in sample density. The thermal expansion increased notably with sodium content, attributed to the disruptive effect of sodium ions on the glass-ceramics structure, while thermal conductivity decreased also attributed to this disruption. AC conductivity increased significantly with sodium, indicating enhanced ionic conductivity, while DC conductivity was observed in doped samples at higher temperatures, with activation energies consistent with ionic conduction mechanisms. The exponent-dependent (s) parameter decreased with higher sodium content, suggesting limited ion diffusion.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130139"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012677","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to investigate the influence of Na2O addition on the structural, thermal, and electrical characteristics of oxynitride glass-ceramics within the Na–K–Mg–Ca–Al–Si–O–N system. Oxynitride glass-ceramic samples were prepared via spark plasma sintering (SPS) with sodium oxide doping levels ranging from 0 wt% to 12 wt%. FESEM analysis revealed changes in sample morphology with increasing sodium content, indicating the formation of granular structures and sodium-rich clusters in the glass matrix. XRD revealed the presence of nanocrystalline phases in doped samples, primarily (Na,Ca)(Si,Al)4O8. IR spectroscopy demonstrated changes in the glass network structure due to sodium, affecting both silicate and aluminum units. Increasing sodium content led to higher crystallinity and a corresponding decrease in sample density. The thermal expansion increased notably with sodium content, attributed to the disruptive effect of sodium ions on the glass-ceramics structure, while thermal conductivity decreased also attributed to this disruption. AC conductivity increased significantly with sodium, indicating enhanced ionic conductivity, while DC conductivity was observed in doped samples at higher temperatures, with activation energies consistent with ionic conduction mechanisms. The exponent-dependent (s) parameter decreased with higher sodium content, suggesting limited ion diffusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺钠氧氮化物玻璃陶瓷的结构、热和电特性研究
本研究旨在探讨 Na2O 的添加对 Na-K-Mg-Ca-Al-Si-O-N 系统中氮化物玻璃陶瓷的结构、热和电特性的影响。氧化氮玻璃陶瓷样品是通过火花等离子烧结(SPS)制备的,氧化钠掺杂水平从 0 wt% 到 12 wt%。FESEM 分析表明,随着钠含量的增加,样品的形态也发生了变化,表明玻璃基体中形成了颗粒结构和富钠簇。XRD 显示掺杂样品中存在纳米晶相,主要是 (Na,Ca)(Si,Al)4O8。红外光谱显示,钠使玻璃网络结构发生了变化,影响了硅酸盐和铝单元。钠含量的增加会导致结晶度的提高和样品密度的相应降低。热膨胀率随钠含量的增加而显著增加,这是由于钠离子对玻璃陶瓷结构的破坏作用,而热导率的降低也是由于这种破坏作用。交流电导率随钠含量的增加而显著提高,表明离子传导性增强,而在掺杂样品中,在较高温度下观察到直流电导率,其活化能与离子传导机制一致。与指数相关的 (s) 参数随着钠含量的增加而降低,这表明离子扩散受到了限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
Colloidal lithography: Synthesis and characterization of SiO2 and TiO2 micro-bowel arrays Effect of V2O5 coatings on NMC 111 battery cathode materials in aqueous process Reduced graphene oxide – CeO2 nanocomposites for photocatalytic dye degradation Structural modification of MgO/Au thin films by aluminum Co-doping and related studies on secondary electron emission Relationship between the shear modulus and volume relaxation in high-entropy metallic glasses: Experiment and physical origin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1