{"title":"Synergistic effects of Carbon@MoS2 core-shell nanostructures on charge dynamics for future optoelectronic applications","authors":"Shreya, Soumya Rai, Peeyush Phogat, Ranjana Jha, Sukhvir Singh","doi":"10.1016/j.matchemphys.2024.130147","DOIUrl":null,"url":null,"abstract":"<div><div>The pursuit of advanced materials for enhancing optoelectronic device performance has led to significant interest in core-shell structures, which combine the unique properties of different materials to achieve superior functionality. This study investigates the hydrothermal synthesis of a series of core-shell Carbon@MoS<sub>2</sub> materials with varying carbon concentrations, aiming to identify the optimal carbon content for enhanced optoelectronic applications. XRD analysis revealed the formation of new crystallographic phases, with crystallite sizes ranging from 1.39 nm to 23.1 nm, indicating significant structural modifications. UV–Vis analysis highlighted an expanded light absorption range and a reduction in bandgap up to 0.92 eV, particularly in carbon-loaded samples. Morphological analysis by FESEM and HRTEM confirmed the successful formation of core-shell nanospheres with well-defined MoS<sub>2</sub> layers enveloping carbon cores. Electrochemical studies, including CV and PEIS, demonstrated that the sample CM4, with an optimal carbon concentration, exhibited balanced redox behavior, lower charge transfer resistance of 2860 Ω, and pronounced Warburg diffusion, marking it as the most effective composition for improving optoelectronic performance in future.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130147"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012756","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The pursuit of advanced materials for enhancing optoelectronic device performance has led to significant interest in core-shell structures, which combine the unique properties of different materials to achieve superior functionality. This study investigates the hydrothermal synthesis of a series of core-shell Carbon@MoS2 materials with varying carbon concentrations, aiming to identify the optimal carbon content for enhanced optoelectronic applications. XRD analysis revealed the formation of new crystallographic phases, with crystallite sizes ranging from 1.39 nm to 23.1 nm, indicating significant structural modifications. UV–Vis analysis highlighted an expanded light absorption range and a reduction in bandgap up to 0.92 eV, particularly in carbon-loaded samples. Morphological analysis by FESEM and HRTEM confirmed the successful formation of core-shell nanospheres with well-defined MoS2 layers enveloping carbon cores. Electrochemical studies, including CV and PEIS, demonstrated that the sample CM4, with an optimal carbon concentration, exhibited balanced redox behavior, lower charge transfer resistance of 2860 Ω, and pronounced Warburg diffusion, marking it as the most effective composition for improving optoelectronic performance in future.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.