Synergistic effects of Carbon@MoS2 core-shell nanostructures on charge dynamics for future optoelectronic applications

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2024-11-15 DOI:10.1016/j.matchemphys.2024.130147
Shreya, Soumya Rai, Peeyush Phogat, Ranjana Jha, Sukhvir Singh
{"title":"Synergistic effects of Carbon@MoS2 core-shell nanostructures on charge dynamics for future optoelectronic applications","authors":"Shreya,&nbsp;Soumya Rai,&nbsp;Peeyush Phogat,&nbsp;Ranjana Jha,&nbsp;Sukhvir Singh","doi":"10.1016/j.matchemphys.2024.130147","DOIUrl":null,"url":null,"abstract":"<div><div>The pursuit of advanced materials for enhancing optoelectronic device performance has led to significant interest in core-shell structures, which combine the unique properties of different materials to achieve superior functionality. This study investigates the hydrothermal synthesis of a series of core-shell Carbon@MoS<sub>2</sub> materials with varying carbon concentrations, aiming to identify the optimal carbon content for enhanced optoelectronic applications. XRD analysis revealed the formation of new crystallographic phases, with crystallite sizes ranging from 1.39 nm to 23.1 nm, indicating significant structural modifications. UV–Vis analysis highlighted an expanded light absorption range and a reduction in bandgap up to 0.92 eV, particularly in carbon-loaded samples. Morphological analysis by FESEM and HRTEM confirmed the successful formation of core-shell nanospheres with well-defined MoS<sub>2</sub> layers enveloping carbon cores. Electrochemical studies, including CV and PEIS, demonstrated that the sample CM4, with an optimal carbon concentration, exhibited balanced redox behavior, lower charge transfer resistance of 2860 Ω, and pronounced Warburg diffusion, marking it as the most effective composition for improving optoelectronic performance in future.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130147"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012756","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of advanced materials for enhancing optoelectronic device performance has led to significant interest in core-shell structures, which combine the unique properties of different materials to achieve superior functionality. This study investigates the hydrothermal synthesis of a series of core-shell Carbon@MoS2 materials with varying carbon concentrations, aiming to identify the optimal carbon content for enhanced optoelectronic applications. XRD analysis revealed the formation of new crystallographic phases, with crystallite sizes ranging from 1.39 nm to 23.1 nm, indicating significant structural modifications. UV–Vis analysis highlighted an expanded light absorption range and a reduction in bandgap up to 0.92 eV, particularly in carbon-loaded samples. Morphological analysis by FESEM and HRTEM confirmed the successful formation of core-shell nanospheres with well-defined MoS2 layers enveloping carbon cores. Electrochemical studies, including CV and PEIS, demonstrated that the sample CM4, with an optimal carbon concentration, exhibited balanced redox behavior, lower charge transfer resistance of 2860 Ω, and pronounced Warburg diffusion, marking it as the most effective composition for improving optoelectronic performance in future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳@MoS2 核壳纳米结构对未来光电应用中电荷动力学的协同效应
为了提高光电器件的性能,人们对先进材料的追求使得核壳结构备受关注,这种结构结合了不同材料的独特性能,从而实现了卓越的功能。本研究调查了一系列不同碳浓度的核壳 Carbon@MoS2 材料的水热合成,旨在确定增强光电应用的最佳碳含量。XRD 分析显示形成了新的结晶相,结晶尺寸从 1.39 纳米到 23.1 纳米不等,表明结构发生了显著变化。紫外可见光分析显示,光吸收范围扩大,带隙减小到 0.92 eV,特别是在碳负载样品中。利用 FESEM 和 HRTEM 进行的形貌分析证实,成功地形成了核壳纳米球,并在碳核外包覆了定义明确的 MoS2 层。包括 CV 和 PEIS 在内的电化学研究表明,具有最佳碳浓度的 CM4 样品表现出平衡的氧化还原行为、较低的电荷转移电阻(2860 Ω)和明显的沃伯格扩散,使其成为未来提高光电性能的最有效成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
Synergistic effects of Carbon@MoS2 core-shell nanostructures on charge dynamics for future optoelectronic applications Optimization of atomic layer deposited Pt-shell thickness of PtCu3@Pt/C catalyst for oxygen reduction reaction Influence of core fluorination on the phase properties of fan-like azobenzene based supramolecules, their cis-trans photoisomerization and photoluminescence dynamics Investigation of structural, thermal, and electrical properties of sodium-doped oxynitride glass-ceramics Synthesis and application of Ho³⁺ doped BaGd₂ZnO₅ nanophosphors for enhanced latent fingerprint development and poroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1