{"title":"Mechanism of glycerol oxidation on bismuth vanadate photoanodes: Influence of tantalum doping","authors":"Hitoshi Kusama, Kazuhiro Sayama","doi":"10.1016/j.jphotochem.2024.116143","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the mechanisms underlying the photoelectrochemical oxidation of glycerol to dihydroxyacetone (DHA) and glyceraldehyde (GLAD) on BiVO<sub>4</sub> and Bi–O–Ta species using density functional theory calculations. The results revealed that for both products and metal-oxides, the first proton-coupled electron-transfer (PCET) step, which forms a carbon-centered radical, served as the rate-limiting step. The formation of DHA from a secondary-carbon-centered radical encountered lower energy barriers compared to the formation of GLAD from a primary-carbon-centered radical, indicating the favorability of the DHA production pathway. The differences between the energy inputs required for DHA and GLAD production were greater on the Bi–O–Ta species compared to the BiVO<sub>4</sub>. Furthermore, the production of formic acid (FA) from glycerol via GLAD, involving three H<sub>2</sub>O molecules and eight PCET steps, encountered greater energy barriers on Bi–O–Ta species than on BiVO<sub>4</sub>. These computational results confirm that the Bi–O–Ta species enhances DHA generation from glycerol while suppressing the production of unfavorable byproducts such as GLAD and FA. Correspondingly, the Ta-doped BiVO<sub>4</sub> photoanode achieves a greater Faradaic efficiency than the BiVO<sub>4</sub> photoanode and approximately 100% selectivity for DHA in acidic media owing to the Bi–O–Ta species formed on the surface.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"460 ","pages":"Article 116143"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024006877","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the mechanisms underlying the photoelectrochemical oxidation of glycerol to dihydroxyacetone (DHA) and glyceraldehyde (GLAD) on BiVO4 and Bi–O–Ta species using density functional theory calculations. The results revealed that for both products and metal-oxides, the first proton-coupled electron-transfer (PCET) step, which forms a carbon-centered radical, served as the rate-limiting step. The formation of DHA from a secondary-carbon-centered radical encountered lower energy barriers compared to the formation of GLAD from a primary-carbon-centered radical, indicating the favorability of the DHA production pathway. The differences between the energy inputs required for DHA and GLAD production were greater on the Bi–O–Ta species compared to the BiVO4. Furthermore, the production of formic acid (FA) from glycerol via GLAD, involving three H2O molecules and eight PCET steps, encountered greater energy barriers on Bi–O–Ta species than on BiVO4. These computational results confirm that the Bi–O–Ta species enhances DHA generation from glycerol while suppressing the production of unfavorable byproducts such as GLAD and FA. Correspondingly, the Ta-doped BiVO4 photoanode achieves a greater Faradaic efficiency than the BiVO4 photoanode and approximately 100% selectivity for DHA in acidic media owing to the Bi–O–Ta species formed on the surface.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.