Effect of pressure-induced lattice distortion on physical properties of L10-FeNi ordered alloy

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2024-11-09 DOI:10.1016/j.matchemphys.2024.130137
Tai-min Cheng, Qing-qing Fan, Guo-qing chai, Xin-xin Zhang, Guo-liang Yu
{"title":"Effect of pressure-induced lattice distortion on physical properties of L10-FeNi ordered alloy","authors":"Tai-min Cheng,&nbsp;Qing-qing Fan,&nbsp;Guo-qing chai,&nbsp;Xin-xin Zhang,&nbsp;Guo-liang Yu","doi":"10.1016/j.matchemphys.2024.130137","DOIUrl":null,"url":null,"abstract":"<div><div>The ground-state properties of tetragonal <em>L</em>1<sub>0</sub> type FeNi alloy have been thoroughly studied, while its physical properties under high pressure are poorly understood. Here, the effect of pressure on the structural, magnetic, mechanical and dynamical properties of <em>L</em>1<sub>0</sub>-FeNi are systematically investigated from the first principles calculations. The critical pressure of ferromagnetic collapse is detected to be 250 GPa, and the system is mechanically and dynamically stable below the critical pressure. The pressure-induced lattice distortion is identified in the pressure range of 80–150 GPa. Within this pressure range, the magnetic moments of the system decrease dramatically, the elastic constants <em>C</em><sub>12</sub>, <em>C</em><sub>13</sub>, <em>C</em><sub>33</sub> and bulk modulus <em>B</em> show softening behavior, and consequently the ductility, longitudinal sound velocity, and acoustic Grüneisen constant exhibit softening behavior, while the elastic anisotropy increase sharply. Furthermore, there are significant variations in magnetocrystalline anisotropy, coercivity, maximum magnetic energy product and magnetic hardness parameters within the pressure range of lattice distortion. More interesting is the discovery that the pressure-induced lattice distortion triggers a transition from semi-hard to hard magnet near 130 GPa.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130137"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012653","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The ground-state properties of tetragonal L10 type FeNi alloy have been thoroughly studied, while its physical properties under high pressure are poorly understood. Here, the effect of pressure on the structural, magnetic, mechanical and dynamical properties of L10-FeNi are systematically investigated from the first principles calculations. The critical pressure of ferromagnetic collapse is detected to be 250 GPa, and the system is mechanically and dynamically stable below the critical pressure. The pressure-induced lattice distortion is identified in the pressure range of 80–150 GPa. Within this pressure range, the magnetic moments of the system decrease dramatically, the elastic constants C12, C13, C33 and bulk modulus B show softening behavior, and consequently the ductility, longitudinal sound velocity, and acoustic Grüneisen constant exhibit softening behavior, while the elastic anisotropy increase sharply. Furthermore, there are significant variations in magnetocrystalline anisotropy, coercivity, maximum magnetic energy product and magnetic hardness parameters within the pressure range of lattice distortion. More interesting is the discovery that the pressure-induced lattice distortion triggers a transition from semi-hard to hard magnet near 130 GPa.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压力诱发的晶格畸变对 L10-FeNi 有序合金物理性质的影响
人们对四方 L10 型铁镍合金的基态性质进行了深入研究,但对其在高压下的物理性质却知之甚少。本文通过第一性原理计算,系统地研究了压力对 L10 型铁镍的结构、磁性、力学和动力学特性的影响。检测到铁磁塌缩的临界压力为 250 GPa,在临界压力以下系统的力学和动力学性质稳定。压力引起的晶格畸变在 80-150 GPa 的压力范围内被识别出来。在此压力范围内,系统的磁矩急剧下降,弹性常数 C12、C13、C33 和体积模量 B 呈现软化行为,因此延展性、纵向声速和声学格吕尼森常数呈现软化行为,而弹性各向异性急剧增加。此外,在晶格畸变的压力范围内,磁晶各向异性、矫顽力、最大磁能积和磁硬度参数也有显著变化。更有趣的是,在 130 GPa 附近,压力引起的晶格畸变引发了从半硬磁体到硬磁体的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
Synergistic effects of Carbon@MoS2 core-shell nanostructures on charge dynamics for future optoelectronic applications Optimization of atomic layer deposited Pt-shell thickness of PtCu3@Pt/C catalyst for oxygen reduction reaction Influence of core fluorination on the phase properties of fan-like azobenzene based supramolecules, their cis-trans photoisomerization and photoluminescence dynamics Investigation of structural, thermal, and electrical properties of sodium-doped oxynitride glass-ceramics Synthesis and application of Ho³⁺ doped BaGd₂ZnO₅ nanophosphors for enhanced latent fingerprint development and poroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1