Improvement in the performance of indium free dye sensitized solar cell by the use of polyaniline composite

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2024-11-02 DOI:10.1016/j.matchemphys.2024.130108
Neha Patni, Shibu G. Pillai
{"title":"Improvement in the performance of indium free dye sensitized solar cell by the use of polyaniline composite","authors":"Neha Patni,&nbsp;Shibu G. Pillai","doi":"10.1016/j.matchemphys.2024.130108","DOIUrl":null,"url":null,"abstract":"<div><div>The photovoltaic study of the fabricated dye sensitized solar cells is revealed in this paper. To provide indium free approach, fluorine doped tin oxide (FTO) and aluminium doped zinc oxide (AZO) glass substrate were used as charge collectors for counter electrodes and photoanode respectively. Also, a novel and natural mixed dye was used as sensitizer and mixture of doped polymer (polyaniline with metallic oxides of tin, vanadium and cerium) and iodide-triiodide couple was utilized as electrolyte for the cell. Optical band gap and light absorption performance of dyes were studied by ultraviolet–visible (UV–vis) spectroscopy. Surface morphology and elemental composition of polymer composites was studied using scanning electron microscopic (SEM) with energy dispersive X ray (EDX) analysis. Phase analysis of the composites was determined by X-ray diffraction and thermal behavior with the help of thermogravimetric analysis (TGA). Photovoltaic characteristics (I–V) and induced photon to current efficiency (IPCE) measurements were also investigated. Highest IPCE of 17.7 % was observed when polyaniline was doped with oxide of vanadium. Hence an efficient, green, indium free and novel cell is fabricated by the usage of different charge collector substrate, natural dye sensitizer and quasi solid-state electrolyte.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130108"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012367","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The photovoltaic study of the fabricated dye sensitized solar cells is revealed in this paper. To provide indium free approach, fluorine doped tin oxide (FTO) and aluminium doped zinc oxide (AZO) glass substrate were used as charge collectors for counter electrodes and photoanode respectively. Also, a novel and natural mixed dye was used as sensitizer and mixture of doped polymer (polyaniline with metallic oxides of tin, vanadium and cerium) and iodide-triiodide couple was utilized as electrolyte for the cell. Optical band gap and light absorption performance of dyes were studied by ultraviolet–visible (UV–vis) spectroscopy. Surface morphology and elemental composition of polymer composites was studied using scanning electron microscopic (SEM) with energy dispersive X ray (EDX) analysis. Phase analysis of the composites was determined by X-ray diffraction and thermal behavior with the help of thermogravimetric analysis (TGA). Photovoltaic characteristics (I–V) and induced photon to current efficiency (IPCE) measurements were also investigated. Highest IPCE of 17.7 % was observed when polyaniline was doped with oxide of vanadium. Hence an efficient, green, indium free and novel cell is fabricated by the usage of different charge collector substrate, natural dye sensitizer and quasi solid-state electrolyte.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用聚苯胺复合材料提高无铟染料敏化太阳能电池的性能
本文对所制造的染料敏化太阳能电池进行了光伏研究。为了提供无铟方法,掺氟氧化锡(FTO)和掺铝氧化锌(AZO)玻璃基板分别用作反电极和光阳极的电荷收集器。此外,一种新型天然混合染料被用作敏化剂,掺杂聚合物(含有锡、钒和铈金属氧化物的聚苯胺)和碘-三碘化物对的混合物被用作电池的电解质。通过紫外-可见(UV-vis)光谱研究了染料的光带隙和光吸收性能。利用扫描电子显微镜(SEM)和能量色散 X 射线(EDX)分析法研究了聚合物复合材料的表面形态和元素组成。通过 X 射线衍射和热重分析(TGA)确定了复合材料的相分析和热行为。此外,还对光伏特性(I-V)和诱导光子电流效率(IPCE)进行了测量。当聚苯胺掺杂氧化钒时,IPCE 最高,达到 17.7%。因此,通过使用不同的电荷收集基底、天然染料敏化剂和准固态电解质,制造出了一种高效、绿色、无铟的新型电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
Microstructure, mechanical, and wear characteristics of heat-treated aerospace-grade aluminium composite reinforced with HEA particles Sonochemical post-synthesis modification of Y zeolite with iron species Layer thickness dependent strengthening and strain delocalization mechanism in CuTa nanopillars with nanoscale amorphous/amorphous interfaces Electrochemical behavior and discharge performance of Al-1Zn-0.4Mn-0.1Sn-xBi as anode alloys for Al-air battery in KOH solution Faradaic and non-faradaic depletions by anodic electrode corrosion with strong electrolytes on tautochrone curve interdigitated electrodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1