Ghani Khan , Muhammad Safdar , Safia Taj , Adnan Munir , Muhammad Tauseef Nasir
{"title":"Lie-symmetry analysis of a three dimensional flow due to unsteady stretching of a flat surface with non-uniform temperature distribution","authors":"Ghani Khan , Muhammad Safdar , Safia Taj , Adnan Munir , Muhammad Tauseef Nasir","doi":"10.1016/j.aej.2024.10.121","DOIUrl":null,"url":null,"abstract":"<div><div>Various mathematical frameworks have been developed to study dynamics of the fluid flow in stretching films. In this work, a three–dimensional flow induced by an unsteady stretching of an infinite flat sheet is analyzed through the Lie symmetry approach. Twelve Lie point symmetries for the nonlinear partial differential equations describing the considered flow and heat transfer phenomena are derived. Invariants for these Lie symmetries are obtained to construct a new class of similarity transformations. With the deduced similarity transformations, the flow equations are converted to ordinary differential equations which are solved using the Homotopy analysis method. The deduced analytic solution enables an exploration of the effects of various parameters on the flow and heat transfer, which have not been revealed previously using the Lie method as per the authors’ knowledge. The influences of the stretching rate, parameters that maintain the non-uniformity and unsteadiness of sheet temperature, and the Prandtl number, are demonstrated with the help of graphs and tables. These results show that for certain values of the system parameters, heat transfer reverses its direction and occurs from the fluid to the sheet. At these values, maximum heat transfer does not occur at the sheet but rather slightly above it.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"112 ","pages":"Pages 424-435"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824014108","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Various mathematical frameworks have been developed to study dynamics of the fluid flow in stretching films. In this work, a three–dimensional flow induced by an unsteady stretching of an infinite flat sheet is analyzed through the Lie symmetry approach. Twelve Lie point symmetries for the nonlinear partial differential equations describing the considered flow and heat transfer phenomena are derived. Invariants for these Lie symmetries are obtained to construct a new class of similarity transformations. With the deduced similarity transformations, the flow equations are converted to ordinary differential equations which are solved using the Homotopy analysis method. The deduced analytic solution enables an exploration of the effects of various parameters on the flow and heat transfer, which have not been revealed previously using the Lie method as per the authors’ knowledge. The influences of the stretching rate, parameters that maintain the non-uniformity and unsteadiness of sheet temperature, and the Prandtl number, are demonstrated with the help of graphs and tables. These results show that for certain values of the system parameters, heat transfer reverses its direction and occurs from the fluid to the sheet. At these values, maximum heat transfer does not occur at the sheet but rather slightly above it.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering