Wengang Zhang , Bo Ran , Xin Gu , Yanmei Zhang , Yulin Zou , Peiqing Wang
{"title":"Efficient reliability analysis of unsaturated slope stability under rapid drawdown using XGBoost-based surrogate model","authors":"Wengang Zhang , Bo Ran , Xin Gu , Yanmei Zhang , Yulin Zou , Peiqing Wang","doi":"10.1016/j.sandf.2024.101539","DOIUrl":null,"url":null,"abstract":"<div><div>Reservoir slope stability during water level drawdown has drawn increasing concern in geotechnical engineering in recent years. In this study, an efficient reliability analysis framework based on the extreme gradient boosting (XGBoost) surrogate model is employed to evaluate the failure probability of unsaturated slopes subjected to the rapid drawdown considering the depth-dependent properties of spatially varying soils. A <em>c</em>-<em>φ</em> slope is selected as an illustrative example to investigate the coupled influence of the non-stationary characteristic of shear strength parameters and saturated hydraulic conductivity, as well as water level drawdown velocity, maximum drop height and scale of fluctuation on the slope failure probability. Results show that the adopted framework can estimate the low-level probability of slope failure with high accuracy and efficiency. It is found that the velocity and maximum height of water level drawdown have a significant effect on the unsaturated slope stability. Furthermore, it is recommended that the depth-dependent non-stationary soil properties be considered in most cases to ensure a more accurate result.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 6","pages":"Article 101539"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080624001173","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reservoir slope stability during water level drawdown has drawn increasing concern in geotechnical engineering in recent years. In this study, an efficient reliability analysis framework based on the extreme gradient boosting (XGBoost) surrogate model is employed to evaluate the failure probability of unsaturated slopes subjected to the rapid drawdown considering the depth-dependent properties of spatially varying soils. A c-φ slope is selected as an illustrative example to investigate the coupled influence of the non-stationary characteristic of shear strength parameters and saturated hydraulic conductivity, as well as water level drawdown velocity, maximum drop height and scale of fluctuation on the slope failure probability. Results show that the adopted framework can estimate the low-level probability of slope failure with high accuracy and efficiency. It is found that the velocity and maximum height of water level drawdown have a significant effect on the unsaturated slope stability. Furthermore, it is recommended that the depth-dependent non-stationary soil properties be considered in most cases to ensure a more accurate result.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.