Study on the photocatalytic properties of the ternary ZnO/MgAl-LDH/FeOOH composite photocatalyst with a Type-II and S-scheme linked carrier migration mechanism in degrading TC solution
{"title":"Study on the photocatalytic properties of the ternary ZnO/MgAl-LDH/FeOOH composite photocatalyst with a Type-II and S-scheme linked carrier migration mechanism in degrading TC solution","authors":"Xuying Duan , Fucheng Yu , Ruobing Jiang , Jinlong Ren , Jielin Zhang , Chenchen Feng , Cuixia Li , Kechao Hu , Xiaogang Hou","doi":"10.1016/j.coco.2024.102156","DOIUrl":null,"url":null,"abstract":"<div><div>The synthesis of high-performance photocatalysts represents a pivotal aspect of research into photocatalytic degradation technology. In order to address this need, a novel ZnO/MgAl-LDH/FeOOH ternary composite photocatalyst has been synthesized via a multi-step process involving the hydrothermal, calcination and ultrasonic-assisted wet impregnation methods. The ternary composite photocatalyst was observed to demonstrate effective separation of photogenerated carriers in photocatalysis, following a Type-II and S-scheme linked carrier migration mechanism. An examination of the photocatalytic characteristics of the composite photocatalyst in the degradation of a tetracycline (TC) solution revealed that the reduction of •O<sub>2</sub><sub><sup>-</sup></sub> radicals and the oxidation of •OH radicals resulted in the effective degradation of the TC solution. The degradation efficiency of the TC solution under the photocatalysis of the ternary composite photocatalyst was observed to be 1.54, 1.11 and 3.15 times that of the single-component samples of ZnO, MgAl-LDH and FeOOH, respectively, in 30 min. Moreover, the degradation pathway of TC molecules under the photocatalysis of the composite has been elucidated. The research findings provide a foundation for further investigation into this composite photocatalyst.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"52 ","pages":"Article 102156"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213924003474","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of high-performance photocatalysts represents a pivotal aspect of research into photocatalytic degradation technology. In order to address this need, a novel ZnO/MgAl-LDH/FeOOH ternary composite photocatalyst has been synthesized via a multi-step process involving the hydrothermal, calcination and ultrasonic-assisted wet impregnation methods. The ternary composite photocatalyst was observed to demonstrate effective separation of photogenerated carriers in photocatalysis, following a Type-II and S-scheme linked carrier migration mechanism. An examination of the photocatalytic characteristics of the composite photocatalyst in the degradation of a tetracycline (TC) solution revealed that the reduction of •O2- radicals and the oxidation of •OH radicals resulted in the effective degradation of the TC solution. The degradation efficiency of the TC solution under the photocatalysis of the ternary composite photocatalyst was observed to be 1.54, 1.11 and 3.15 times that of the single-component samples of ZnO, MgAl-LDH and FeOOH, respectively, in 30 min. Moreover, the degradation pathway of TC molecules under the photocatalysis of the composite has been elucidated. The research findings provide a foundation for further investigation into this composite photocatalyst.
期刊介绍:
Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.