{"title":"Enhancing performance of end-to-end communication system using Attention Mechanism-based Sparse Autoencoder over Rayleigh fading channel","authors":"Safalata S. Sindal, Y.N. Trivedi","doi":"10.1016/j.phycom.2024.102534","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning has revolutionized communication systems by introducing innovative approaches to address channel impairments through end-to-end models. Autoencoders, a type of deep learning architecture, are adept at learning compact data representations. However, conventional autoencoders in end-to-end models can suffer from overfitting, which limits their effectiveness in noisy communication environments. To address this issue, we propose a Sparse Autoencoder-based (SAE) model that enforces sparsity and promotes the extraction of robust features. Despite its effectiveness, the SAE model may still lack the ability to focus on the most relevant features of the input data. To overcome this limitation, we further introduce an Attention Mechanism-based Sparse Autoencoder (ASA) model. This model integrates the feature extraction capabilities of a sparse autoencoder with an attention mechanism that selectively highlights informative features of the signal. Through simulations, we demonstrate that both proposed models significantly improve <span><math><mi>M</mi></math></span>-PSK and <span><math><mi>M</mi></math></span>-QAM communication system performance. When trained at 7 dB, both proposed models exhibit significant performance improvements at higher testing average SNRs. Our results show that the SAE model outperforms the conventional Maximum Likelihood Detection (MLD) model and baseline autoencoder systems but suffers from error floor issues. The SAE model suffers from an error floor at average SNRs beyond 16 dB for BPSK and 14 dB for higher-order modulation schemes. As the value of <span><math><mi>M</mi></math></span> increases, the performance gap between the MLD and the proposed SAE model narrows. The ASA model, however, effectively mitigates the error floor observed in the SAE model for all values of <span><math><mi>M</mi></math></span> and across all modulation schemes. This research highlights the benefits of integrating an attention mechanism with SAE, resulting in enhanced robustness and reliability in communication systems characterized by improved accuracy and reduced error rates.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"67 ","pages":"Article 102534"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724002520","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning has revolutionized communication systems by introducing innovative approaches to address channel impairments through end-to-end models. Autoencoders, a type of deep learning architecture, are adept at learning compact data representations. However, conventional autoencoders in end-to-end models can suffer from overfitting, which limits their effectiveness in noisy communication environments. To address this issue, we propose a Sparse Autoencoder-based (SAE) model that enforces sparsity and promotes the extraction of robust features. Despite its effectiveness, the SAE model may still lack the ability to focus on the most relevant features of the input data. To overcome this limitation, we further introduce an Attention Mechanism-based Sparse Autoencoder (ASA) model. This model integrates the feature extraction capabilities of a sparse autoencoder with an attention mechanism that selectively highlights informative features of the signal. Through simulations, we demonstrate that both proposed models significantly improve -PSK and -QAM communication system performance. When trained at 7 dB, both proposed models exhibit significant performance improvements at higher testing average SNRs. Our results show that the SAE model outperforms the conventional Maximum Likelihood Detection (MLD) model and baseline autoencoder systems but suffers from error floor issues. The SAE model suffers from an error floor at average SNRs beyond 16 dB for BPSK and 14 dB for higher-order modulation schemes. As the value of increases, the performance gap between the MLD and the proposed SAE model narrows. The ASA model, however, effectively mitigates the error floor observed in the SAE model for all values of and across all modulation schemes. This research highlights the benefits of integrating an attention mechanism with SAE, resulting in enhanced robustness and reliability in communication systems characterized by improved accuracy and reduced error rates.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.