Synergistic visible-light photocatalytic degradation of amoxicillin and ciprofloxacin using Ag/AgO-integrated 2D/2D g-C3N4/Ni3V2O8 S-scheme heterostructure
Akhila Amasegowda , Sneha Yadav , Ragesh Nath R , Udaya Kumar A. H , Sneha Narayan Kulkarni , Harikaranahalli Puttaiah Shivaraju , N.K. Lokanath
{"title":"Synergistic visible-light photocatalytic degradation of amoxicillin and ciprofloxacin using Ag/AgO-integrated 2D/2D g-C3N4/Ni3V2O8 S-scheme heterostructure","authors":"Akhila Amasegowda , Sneha Yadav , Ragesh Nath R , Udaya Kumar A. H , Sneha Narayan Kulkarni , Harikaranahalli Puttaiah Shivaraju , N.K. Lokanath","doi":"10.1016/j.mtsust.2024.101017","DOIUrl":null,"url":null,"abstract":"<div><div>Employing a Step-scheme (S-scheme) configuration combined with a cocatalyst offers an effective approach to boost the photocatalytic efficiency of nano-heterostructures. In this study, Ag/AgO nanoparticles were integrated into a 2D/2D heterojunction (g-C<sub>3</sub>N<sub>4</sub>/Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>) for the photocatalytic degradation of amoxicillin and ciprofloxacin under visible light exposure. Various comprehensive investigative techniques were utilized to verify the composition, formation, and band structure of the g-C<sub>3</sub>N<sub>4</sub>/Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>–Ag/AgO heterostructure. The embedded Ag/AgO nanoparticles play a dual role: capturing carriers of charge and encouraging electron-hole separation, thus creating a heterojunction of the p-n S-scheme that improves the electrons and holes redox potential for surface reactions. The 2D/2D morphology enables substantial interfacial contact, while Ag/AgO nanoparticles act as cocatalysts, improving electron extraction, affecting product selectivity, and boosting catalytic activity. The optimized g-C<sub>3</sub>N<sub>4</sub>/Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>–Ag/AgO composite exhibits significant photocatalytic degradation of ciprofloxacin (CIP) and amoxicillin (AMX) under the influence of visible light, reaching elimination rates of 58.8% and 62.1% within 270 min, respectively. Additionally, •O<sub>2</sub>⁻ and h⁺ are the primary active species, with •O<sub>2</sub>⁻ leading the photocatalytic elimination of CIP and AMX. This study highlights a potential strategy to developing photocatalysts with a high elimination efficiency of antibiotics by harnessing the enhanced reducing and oxidizing capabilities of S-scheme heterojunctions through meticulous structural configuration.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101017"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003531","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Employing a Step-scheme (S-scheme) configuration combined with a cocatalyst offers an effective approach to boost the photocatalytic efficiency of nano-heterostructures. In this study, Ag/AgO nanoparticles were integrated into a 2D/2D heterojunction (g-C3N4/Ni3V2O8) for the photocatalytic degradation of amoxicillin and ciprofloxacin under visible light exposure. Various comprehensive investigative techniques were utilized to verify the composition, formation, and band structure of the g-C3N4/Ni3V2O8–Ag/AgO heterostructure. The embedded Ag/AgO nanoparticles play a dual role: capturing carriers of charge and encouraging electron-hole separation, thus creating a heterojunction of the p-n S-scheme that improves the electrons and holes redox potential for surface reactions. The 2D/2D morphology enables substantial interfacial contact, while Ag/AgO nanoparticles act as cocatalysts, improving electron extraction, affecting product selectivity, and boosting catalytic activity. The optimized g-C3N4/Ni3V2O8–Ag/AgO composite exhibits significant photocatalytic degradation of ciprofloxacin (CIP) and amoxicillin (AMX) under the influence of visible light, reaching elimination rates of 58.8% and 62.1% within 270 min, respectively. Additionally, •O2⁻ and h⁺ are the primary active species, with •O2⁻ leading the photocatalytic elimination of CIP and AMX. This study highlights a potential strategy to developing photocatalysts with a high elimination efficiency of antibiotics by harnessing the enhanced reducing and oxidizing capabilities of S-scheme heterojunctions through meticulous structural configuration.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.