Building Li–S batteries with enhanced temperature adaptability via a redox-active COF-based barrier-trapping electrocatalyst

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-10-24 DOI:10.1016/j.jechem.2024.10.019
Jie Xu , Acheng Zhu , Zhangyu Zheng , Yiming Qi , Yuwen Cheng , Yongjie Cao , Bo Peng , Lianbo Ma , Yonggang Wang
{"title":"Building Li–S batteries with enhanced temperature adaptability via a redox-active COF-based barrier-trapping electrocatalyst","authors":"Jie Xu ,&nbsp;Acheng Zhu ,&nbsp;Zhangyu Zheng ,&nbsp;Yiming Qi ,&nbsp;Yuwen Cheng ,&nbsp;Yongjie Cao ,&nbsp;Bo Peng ,&nbsp;Lianbo Ma ,&nbsp;Yonggang Wang","doi":"10.1016/j.jechem.2024.10.019","DOIUrl":null,"url":null,"abstract":"<div><div>Covalent organic frameworks (COFs) are promising materials for mitigating polysulfide shuttling in lithium-sulfur (Li–S) batteries, but enhancing their ability to convert polysulfides across a wide temperature range remains a challenge. Herein, we introduce a redox-active COF (RaCOF) that functions as both a physical barrier and a kinetic enhancer to improve the temperature adaptability of Li–S batteries. The RaCOF constructed from redox-active anthraquinone units accelerates polysulfide conversion kinetics through reversible C=O/C-OLi transformations within a voltage range of 1.7 to 2.8 V (<em>vs.</em> Li<sup>+</sup>/Li), optimizing sulfur redox reactions in ether-based electrolytes. Unlike conventional COFs, RaCOF provides bidentate trapping of polysulfides, increasing binding energy and facilitating more effective polysulfide management. In-situ XRD and ToF-SIMS analyses confirm that RaCOF enhances polysulfide adsorption and promotes the transformation of lithium sulfide (Li<sub>2</sub>S), leading to better sulfur cathode reutilization. Consequently, RaCOF-modified Li–S batteries demonstrate low self-discharge (4.0% decay over a 7-day rest), excellent wide-temperature performance (stable from −10 to + 60 °C), and high-rate cycling stability (94% capacity retention over 500 cycles at 5.0 C). This work offers valuable insights for designing COF structures aimed at achieving temperature-adaptive performance in rechargeable batteries.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 702-712"},"PeriodicalIF":13.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007228","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent organic frameworks (COFs) are promising materials for mitigating polysulfide shuttling in lithium-sulfur (Li–S) batteries, but enhancing their ability to convert polysulfides across a wide temperature range remains a challenge. Herein, we introduce a redox-active COF (RaCOF) that functions as both a physical barrier and a kinetic enhancer to improve the temperature adaptability of Li–S batteries. The RaCOF constructed from redox-active anthraquinone units accelerates polysulfide conversion kinetics through reversible C=O/C-OLi transformations within a voltage range of 1.7 to 2.8 V (vs. Li+/Li), optimizing sulfur redox reactions in ether-based electrolytes. Unlike conventional COFs, RaCOF provides bidentate trapping of polysulfides, increasing binding energy and facilitating more effective polysulfide management. In-situ XRD and ToF-SIMS analyses confirm that RaCOF enhances polysulfide adsorption and promotes the transformation of lithium sulfide (Li2S), leading to better sulfur cathode reutilization. Consequently, RaCOF-modified Li–S batteries demonstrate low self-discharge (4.0% decay over a 7-day rest), excellent wide-temperature performance (stable from −10 to + 60 °C), and high-rate cycling stability (94% capacity retention over 500 cycles at 5.0 C). This work offers valuable insights for designing COF structures aimed at achieving temperature-adaptive performance in rechargeable batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于氧化还原活性 COF 的势垒捕获电催化剂,构建具有更强温度适应性的锂-S 电池
共价有机框架(COF)是减轻锂硫(Li-S)电池中多聚硫化物穿梭现象的理想材料,但提高其在宽温度范围内转化多聚硫化物的能力仍是一项挑战。在此,我们介绍一种氧化还原活性 COF(RaCOF),它既是物理屏障,又是动力学增强剂,可提高锂-硫电池的温度适应性。由具有氧化还原活性的蒽醌单元构建而成的 RaCOF 可在 1.7 至 2.8 V(相对于 Li+/Li)的电压范围内通过 C=O/C-OLi 的可逆转化加速多硫化物的转化动力学,从而优化醚基电解质中的硫氧化还原反应。与传统的 COF 不同,RaCOF 提供了对多硫化物的双齿捕集,增加了结合能,有利于更有效地管理多硫化物。原位 XRD 和 ToF-SIMS 分析证实,RaCOF 可增强对多硫化物的吸附,促进硫化锂(Li2S)的转化,从而提高硫阴极的再利用率。因此,RaCOF 改性锂-S 电池表现出较低的自放电率(静置 7 天衰减 4.0%)、优异的宽温性能(在 -10 至 + 60 °C 范围内稳定)和高倍率循环稳定性(在 5.0 C 下循环 500 次,容量保持率 94%)。这项研究为设计 COF 结构以实现充电电池的温度适应性能提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Catalytic production of high-energy-density spiro polycyclic jet fuel with biomass derivatives Metallized polymer current collector as “stress acceptor” for stable micron-sized silicon anodes Microdynamic modulation through Pt–O–Ni proton and electron “superhighway” for pH-universal hydrogen evolution High-areal-capacity and long-life sulfide-based all-solid-state lithium battery achieved by regulating surface-to-bulk oxygen activity Introducing strong metal–oxygen bonds to suppress the Jahn-Teller effect and enhance the structural stability of Ni/Co-free Mn-based layered oxide cathodes for potassium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1