Catalytic production of high-energy-density spiro polycyclic jet fuel with biomass derivatives

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-10-30 DOI:10.1016/j.jechem.2024.10.024
Wen-Jing Zhang , Yan-Cheng Hu , Yan-Hong Tan , Jia Li , Ning Li , Jing-Pei Cao
{"title":"Catalytic production of high-energy-density spiro polycyclic jet fuel with biomass derivatives","authors":"Wen-Jing Zhang ,&nbsp;Yan-Cheng Hu ,&nbsp;Yan-Hong Tan ,&nbsp;Jia Li ,&nbsp;Ning Li ,&nbsp;Jing-Pei Cao","doi":"10.1016/j.jechem.2024.10.024","DOIUrl":null,"url":null,"abstract":"<div><div>High-energy-density (HED) fuel (e.g. widely used JP-10 and RJ-4), featuring compact 3D polycyclic structure with high strain, is of critical importance for volume-limited military aircraft, since their high density and combustion heat can provide more propulsion energy. To reduce the reliance on petroleum source, it is highly desirable to develop renewable alternatives for the production of strained polycyclic HED fuel, but which remains a big challenge because of the inaccessibility caused by the high strain. We herein demonstrate a three-step catalytic route towards highly strained C<sub>17</sub> and C<sub>18</sub> spirofuel with biomass feedstocks. The process includes catalytic aldol condensation of renewable cyclohexanone/cyclopentanone with benzaldehyde, catalytic spiro Diels-Alder (D-A) reaction of aldol adduct with isoprene, and catalytic hydrodeoxygenation. The key spiro D-A reaction is enabled by the catalysis of heterogeneous Lewis acidic ionic liquid. The chloroaluminate IL, formed by benign urea and AlCl<sub>3</sub>, exhibits good catalytic performance and reusability for this step. An eventual hydrodeoxygenation (HDO) over Pd/C and H-Y produces strained tricyclic spirofuel with density &gt;0.93 g/mL, combustion heat &gt;41 MJ/L and freezing point &lt;  −40 °C, which are better than the properties of tactical fuel RJ-4. Therefore, it is anticipated that the as-prepared renewable fuels have the potential to replace traditional petroleum-derived HED fuels.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 760-768"},"PeriodicalIF":13.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007290","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

High-energy-density (HED) fuel (e.g. widely used JP-10 and RJ-4), featuring compact 3D polycyclic structure with high strain, is of critical importance for volume-limited military aircraft, since their high density and combustion heat can provide more propulsion energy. To reduce the reliance on petroleum source, it is highly desirable to develop renewable alternatives for the production of strained polycyclic HED fuel, but which remains a big challenge because of the inaccessibility caused by the high strain. We herein demonstrate a three-step catalytic route towards highly strained C17 and C18 spirofuel with biomass feedstocks. The process includes catalytic aldol condensation of renewable cyclohexanone/cyclopentanone with benzaldehyde, catalytic spiro Diels-Alder (D-A) reaction of aldol adduct with isoprene, and catalytic hydrodeoxygenation. The key spiro D-A reaction is enabled by the catalysis of heterogeneous Lewis acidic ionic liquid. The chloroaluminate IL, formed by benign urea and AlCl3, exhibits good catalytic performance and reusability for this step. An eventual hydrodeoxygenation (HDO) over Pd/C and H-Y produces strained tricyclic spirofuel with density >0.93 g/mL, combustion heat >41 MJ/L and freezing point <  −40 °C, which are better than the properties of tactical fuel RJ-4. Therefore, it is anticipated that the as-prepared renewable fuels have the potential to replace traditional petroleum-derived HED fuels.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用生物质衍生物催化生产高能量密度螺多环喷气燃料
高能量密度(HED)燃料(如广泛使用的 JP-10 和 RJ-4)具有高应变的紧凑三维多环结构,对体积有限的军用飞机至关重要,因为其高密度和燃烧热可提供更多推进能量。为了减少对石油资源的依赖,开发生产应变多环 HED 燃料的可再生替代品是非常可取的,但由于高应变造成的不可获取性,这仍然是一个巨大的挑战。在此,我们展示了利用生物质原料生产高应变 C17 和 C18 螺烷燃料的三步催化路线。该工艺包括可再生环己酮/环戊酮与苯甲醛的催化醛缩合反应、醛加合物与异戊二烯的催化螺 Diels-Alder (D-A) 反应以及催化加氢脱氧反应。关键的螺 D-A 反应是由异相路易斯酸离子液体催化实现的。由良性脲和 AlCl3 生成的氯铝酸盐离子液体在这一步骤中表现出良好的催化性能和重复使用性。最终在 Pd/C 和 H-Y 上进行加氢脱氧(HDO)生成了拉伸三环螺环燃料,其密度为 0.93 g/mL,燃烧热为 41 MJ/L,凝固点为 -40 °C,优于战术燃料 RJ-4。因此,预计制备的可再生燃料具有替代传统石油衍生 HED 燃料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Catalytic production of high-energy-density spiro polycyclic jet fuel with biomass derivatives Metallized polymer current collector as “stress acceptor” for stable micron-sized silicon anodes Microdynamic modulation through Pt–O–Ni proton and electron “superhighway” for pH-universal hydrogen evolution High-areal-capacity and long-life sulfide-based all-solid-state lithium battery achieved by regulating surface-to-bulk oxygen activity Introducing strong metal–oxygen bonds to suppress the Jahn-Teller effect and enhance the structural stability of Ni/Co-free Mn-based layered oxide cathodes for potassium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1