{"title":"Efflorescence behavior and mechanism of burnt coal cinder-based geopolymers under different alkali activators","authors":"Muyang Huang , Shenxu Bao , Yimin Zhang , Zichen Zhou , Xiangke Jiao","doi":"10.1016/j.conbuildmat.2024.139057","DOIUrl":null,"url":null,"abstract":"<div><div>Efflorescence of geopolymers is a common phenomenon, which is caused by overuse of activators and dissolution-crystallization of carbonate. It has been widely focused on, but its behavior and mechanism remain highly disputed. In the study, the behavior and mechanism of four alkali-activated burnt coal cinder-based geopolymers under two curing conditions of intensifying and inhibiting efflorescence was discussed. The study results show that the deterioration of geopolymer properties caused by efflorescence has a strong timeliness and is closely related to the progress of geopolymerization. Furthermore, through comparative verification of performance testing and phases analysis, the direct factor of the degradation of geopolymer properties is not the carbonate produced by excessive alkaline activators. The direct factor of it is that soluble active components (Si, Al or P) are carried to the surface of the geopolymer by the efflorescence substances, resulting in the permanent loss of gel products. Moreover, the efflorescence also shows a complex and close relationship with the types of activator combination, pore structure and curing system. The perception of the association between efflorescence formation and affecting factors provides important insights into the manufacturing and application of geopolymer related materials.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"455 ","pages":"Article 139057"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824041990","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Efflorescence of geopolymers is a common phenomenon, which is caused by overuse of activators and dissolution-crystallization of carbonate. It has been widely focused on, but its behavior and mechanism remain highly disputed. In the study, the behavior and mechanism of four alkali-activated burnt coal cinder-based geopolymers under two curing conditions of intensifying and inhibiting efflorescence was discussed. The study results show that the deterioration of geopolymer properties caused by efflorescence has a strong timeliness and is closely related to the progress of geopolymerization. Furthermore, through comparative verification of performance testing and phases analysis, the direct factor of the degradation of geopolymer properties is not the carbonate produced by excessive alkaline activators. The direct factor of it is that soluble active components (Si, Al or P) are carried to the surface of the geopolymer by the efflorescence substances, resulting in the permanent loss of gel products. Moreover, the efflorescence also shows a complex and close relationship with the types of activator combination, pore structure and curing system. The perception of the association between efflorescence formation and affecting factors provides important insights into the manufacturing and application of geopolymer related materials.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.