{"title":"Low permittivity germanate LaAlGe2O7 ceramics: Synthesis, sintering behavior, spectral characteristics and microwave dielectric properties","authors":"Qinglan Yang, Yinghan He, Xiaoli Wei, Xiuli Chen, Huanfu Zhou","doi":"10.1016/j.ceramint.2024.09.325","DOIUrl":null,"url":null,"abstract":"<div><div>Novel low permittivity LaAlGe<sub>2</sub>O<sub>7</sub> ceramics was prepared by a solid-state reaction method, and the relationship between microstructure and microwave properties was revealed. XRD and Rietveld refinement confirmed that the crystal structure of LaAlGe<sub>2</sub>O<sub>7</sub> is monoclinic <em>P</em>2<sub>1</sub>/<em>c</em> space group. Raman spectroscopy reflects the trend of internal structural order and phonon-damping behavior of LaAlGe<sub>2</sub>O<sub>7</sub> ceramics. The ceramic sintered at 1250 °C exhibited the best surface morphology and optimum microwave dielectric properties of <em>ε</em><sub><em>r</em></sub> = 9.22, <em>Q × f</em> = 33417 GHz, <em>τ</em><sub><em>f</em></sub> = −71.68 ppm/°C. The lattice energy and packing fraction are used to explain the change of <em>Q × f</em> value. The relationship between phonon damping behavior and microwave dielectric properties was revealed. The temperature stability was studied by bond valence. The LaAlGe<sub>2</sub>O<sub>7</sub> ceramics is a strong candidate for the substrate material of millimeter wave communication.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 49827-49833"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224043591","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Novel low permittivity LaAlGe2O7 ceramics was prepared by a solid-state reaction method, and the relationship between microstructure and microwave properties was revealed. XRD and Rietveld refinement confirmed that the crystal structure of LaAlGe2O7 is monoclinic P21/c space group. Raman spectroscopy reflects the trend of internal structural order and phonon-damping behavior of LaAlGe2O7 ceramics. The ceramic sintered at 1250 °C exhibited the best surface morphology and optimum microwave dielectric properties of εr = 9.22, Q × f = 33417 GHz, τf = −71.68 ppm/°C. The lattice energy and packing fraction are used to explain the change of Q × f value. The relationship between phonon damping behavior and microwave dielectric properties was revealed. The temperature stability was studied by bond valence. The LaAlGe2O7 ceramics is a strong candidate for the substrate material of millimeter wave communication.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.