Gaojie Zheng , Zhenlong Wu , Huijun Tan , Jiahao Ren , Yue Zhang , Ge Zhou
{"title":"Aerodynamic study of a bifurcated turboprop engine inlet with a propeller for flow at ground suction conditions","authors":"Gaojie Zheng , Zhenlong Wu , Huijun Tan , Jiahao Ren , Yue Zhang , Ge Zhou","doi":"10.1016/j.ast.2024.109720","DOIUrl":null,"url":null,"abstract":"<div><div>An advanced turboprop inlet with a bypass duct plays a crucial role in preventing foreign object damage and ensuring a high-quality airflow to the engine. However, it also introduces an increased flow complexity and design challenge due to the interaction between the propeller and the bifurcated ducts. To address these issues, a combined experimental and computational fluid dynamics (CFD) study was conducted on the aerodynamic performance and flowfield characteristics of a turboprop inlet equipped with a bypass duct considering the propeller interference. A ground suction test bench was utilized for generating the working conditions and the performance was measured by using total pressure rakes and pressure scanners. It is found that the rotational propeller on the one hand does work on and thus increases the total pressure recovery of the inlet, however, on the other hand causes a turning effect on the inlet flowfield structure along the direction of rotation and increases total pressure and swirling flow distortions in the engine duct. Besides, the engine duct and the bypass duct interact with each other. The combined influence of suction effect and the profile induction of the inlet leads to the majority of the shed vortices being drawn into the engine duct. Lastly, the presence of deflectors installed in the engine duct is found to effectively mitigate the secondary flow, thereby reducing the swirl distortion within the engine duct. This study may provide a significant reference to the design and optimization of advanced turboprop inlets with bypass ducts.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109720"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008496","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
An advanced turboprop inlet with a bypass duct plays a crucial role in preventing foreign object damage and ensuring a high-quality airflow to the engine. However, it also introduces an increased flow complexity and design challenge due to the interaction between the propeller and the bifurcated ducts. To address these issues, a combined experimental and computational fluid dynamics (CFD) study was conducted on the aerodynamic performance and flowfield characteristics of a turboprop inlet equipped with a bypass duct considering the propeller interference. A ground suction test bench was utilized for generating the working conditions and the performance was measured by using total pressure rakes and pressure scanners. It is found that the rotational propeller on the one hand does work on and thus increases the total pressure recovery of the inlet, however, on the other hand causes a turning effect on the inlet flowfield structure along the direction of rotation and increases total pressure and swirling flow distortions in the engine duct. Besides, the engine duct and the bypass duct interact with each other. The combined influence of suction effect and the profile induction of the inlet leads to the majority of the shed vortices being drawn into the engine duct. Lastly, the presence of deflectors installed in the engine duct is found to effectively mitigate the secondary flow, thereby reducing the swirl distortion within the engine duct. This study may provide a significant reference to the design and optimization of advanced turboprop inlets with bypass ducts.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.