Transport properties of B-site codoped CaHfO3 proton conductors with octahedral distortion

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2024-11-18 DOI:10.1039/D4RA06213B
Wenlong Huang, Mingze Lv, Ying Li, Yushi Ding, Jiayao Lu, Chunsheng Zhuang, Pengfei Yue and Wei Zhang
{"title":"Transport properties of B-site codoped CaHfO3 proton conductors with octahedral distortion","authors":"Wenlong Huang, Mingze Lv, Ying Li, Yushi Ding, Jiayao Lu, Chunsheng Zhuang, Pengfei Yue and Wei Zhang","doi":"10.1039/D4RA06213B","DOIUrl":null,"url":null,"abstract":"<p >Perovskite-type solid electrolytes exhibit a diverse range of conductive properties due to the competition and coupling of multiple degrees of freedom. In perovskite structures, B-site and X-site ions form topological octahedral sublattices, which are instrumental in regulating transport properties for various charge carriers. However, research focused on the relationship between octahedral distortion and conductive properties in perovskite-type proton conductors remains limited. In this study, dopants such as Ge, Sn, Pr, and Ce were selected to modify the degree of BO<small><sub>6</sub></small> octahedral distortion in CaHf<small><sub>0.9</sub></small>Sc<small><sub>0.1</sub></small>O<small><sub>3−<em>δ</em></sub></small>. The relationships between conductivity, transport number, mobility, and the distortion degree were systematically investigated. The data indicate that both proton and oxygen ion mobilities initially increase with the octahedral distortion angle and then decrease, and CaHf<small><sub>0.8</sub></small>Sn<small><sub>0.1</sub></small>Sc<small><sub>0.1</sub></small>O<small><sub>3−<em>δ</em></sub></small> with an octahedral distortion angle of 15.6°, exhibited the highest ionic mobilities and conductivities. The BO<small><sub>6</sub></small> octahedral distortion appears to limit oxide ion conduction while enhancing the proton transport number. However, excessive doping generates additional oxygen vacancies, which adversely affect proton conduction. Under the combined influence of these factors, CaHf<small><sub>0.8</sub></small>Ce<small><sub>0.1</sub></small>Sc<small><sub>0.1</sub></small>O<small><sub>3−<em>δ</em></sub></small> achieved the highest proton transport number of 0.503 at 800 °C. Overall, this work provides insights into the relationship between octahedral distortion and conductive properties, suggesting that co-doping is a feasible approach for further regulating carrier mobility properties.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 49","pages":" 36782-36793"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra06213b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra06213b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite-type solid electrolytes exhibit a diverse range of conductive properties due to the competition and coupling of multiple degrees of freedom. In perovskite structures, B-site and X-site ions form topological octahedral sublattices, which are instrumental in regulating transport properties for various charge carriers. However, research focused on the relationship between octahedral distortion and conductive properties in perovskite-type proton conductors remains limited. In this study, dopants such as Ge, Sn, Pr, and Ce were selected to modify the degree of BO6 octahedral distortion in CaHf0.9Sc0.1O3−δ. The relationships between conductivity, transport number, mobility, and the distortion degree were systematically investigated. The data indicate that both proton and oxygen ion mobilities initially increase with the octahedral distortion angle and then decrease, and CaHf0.8Sn0.1Sc0.1O3−δ with an octahedral distortion angle of 15.6°, exhibited the highest ionic mobilities and conductivities. The BO6 octahedral distortion appears to limit oxide ion conduction while enhancing the proton transport number. However, excessive doping generates additional oxygen vacancies, which adversely affect proton conduction. Under the combined influence of these factors, CaHf0.8Ce0.1Sc0.1O3−δ achieved the highest proton transport number of 0.503 at 800 °C. Overall, this work provides insights into the relationship between octahedral distortion and conductive properties, suggesting that co-doping is a feasible approach for further regulating carrier mobility properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有八面体畸变的 B 位共掺 CaHfO3 质子导体的传输特性
由于多种自由度的竞争和耦合,包晶型固体电解质表现出多种多样的导电特性。在包晶结构中,B 位和 X 位离子形成拓扑八面体亚晶格,这对调节各种电荷载流子的传输特性至关重要。然而,针对八面体畸变与包晶型质子导体导电特性之间关系的研究仍然有限。本研究选择了 Ge、Sn、Pr 和 Ce 等掺杂剂来改变 CaHf0.9Sc0.1O3-δ 中 BO6 八面体畸变的程度。系统研究了电导率、传输数、迁移率和畸变度之间的关系。数据表明,质子和氧离子迁移率最初随着八面体畸变角的增大而增大,然后减小,八面体畸变角为 15.6°的 CaHf0.8Sn0.1Sc0.1O3-δ 的离子迁移率和电导率最高。BO6 八面体畸变似乎限制了氧化物离子的传导,同时提高了质子传输数。然而,过度掺杂会产生额外的氧空位,从而对质子传导产生不利影响。在这些因素的综合影响下,CaHf0.8Ce0.1Sc0.1O3-δ 在 800 °C 时达到了最高的质子输运数 0.503。总之,这项研究深入揭示了八面体畸变与导电特性之间的关系,表明共掺杂是进一步调节载流子迁移特性的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
Combining de novo molecular design with semiempirical protein–ligand binding free energy calculation† Characterization and enhanced carbon dioxide sensing performance of spin-coated Na- and Li-doped and Co-doped cobalt oxide thin films† Regulation of oxidative stress enzymes in Candida auris by Dermaseptin: potential implications for antifungal drug discovery Design of an LiF-rich interface layer using high-concentration fluoroethylene carbonate and lithium bis(fluorosulfonyl)imide (LiFSI) to stabilize Li metal batteries A catalytic approach for the dehydrogenative upgradation of crude glycerol to lactate and hydrogen generation†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1