Fumiaki Kato, Urara Maruoka, Akitoshi Nakano, Taishun Manjo, Daisuke Ishikawa, Alfred Q. R. Baron, Yukio Yasui, Takumi Hasegawa, Ichiro Terasaki
{"title":"Enhanced Cryogenic Thermoelectricity in Semimetal Ta2PdSe6 through Non-Fermi Liquid-Like Charge and Heat Transport","authors":"Fumiaki Kato, Urara Maruoka, Akitoshi Nakano, Taishun Manjo, Daisuke Ishikawa, Alfred Q. R. Baron, Yukio Yasui, Takumi Hasegawa, Ichiro Terasaki","doi":"10.1002/apxr.202400063","DOIUrl":null,"url":null,"abstract":"<p>The thermal properties of semimetal Ta<sub>2</sub>PdSe<sub>6</sub> are studied, which exhibits a large thermoelectric power factor at low temperatures, by combining chemical substitution, transport measurements, and inelastic X-ray scattering. A serious violation of the Wiedemann-Franz law (WFL) is observed, which establishes the relationship between conductivity and thermal conductivity of metals. This violation leads to a thermal conductivity of Ta<sub>2</sub>PdSe<sub>6</sub> lower than expected from the WFL and resistivity below 20 K, resulting in the highest figure of merit below 20 K among the p-type thermoelectric materials thus far. Furthermore, electric and thermal resistivity show a non-Fermi liquid-like temperature dependence, indicating an exotic electronic state with an unconventional scattering process for heat and charge carriers. This study suggests that semimetals in the non-Fermi liquid regime may be an intriguing platform, not only for fundamental physics but also for exploring novel thermoelectric materials tailored for low-temperature applications.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400063","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The thermal properties of semimetal Ta2PdSe6 are studied, which exhibits a large thermoelectric power factor at low temperatures, by combining chemical substitution, transport measurements, and inelastic X-ray scattering. A serious violation of the Wiedemann-Franz law (WFL) is observed, which establishes the relationship between conductivity and thermal conductivity of metals. This violation leads to a thermal conductivity of Ta2PdSe6 lower than expected from the WFL and resistivity below 20 K, resulting in the highest figure of merit below 20 K among the p-type thermoelectric materials thus far. Furthermore, electric and thermal resistivity show a non-Fermi liquid-like temperature dependence, indicating an exotic electronic state with an unconventional scattering process for heat and charge carriers. This study suggests that semimetals in the non-Fermi liquid regime may be an intriguing platform, not only for fundamental physics but also for exploring novel thermoelectric materials tailored for low-temperature applications.