GETr: A Geometric Equivariant Transformer for Point Cloud Registration

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer Graphics Forum Pub Date : 2024-11-07 DOI:10.1111/cgf.15216
Chang Yu, Sanguo Zhang, Li-Yong Shen
{"title":"GETr: A Geometric Equivariant Transformer for Point Cloud Registration","authors":"Chang Yu,&nbsp;Sanguo Zhang,&nbsp;Li-Yong Shen","doi":"10.1111/cgf.15216","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>As a fundamental problem in computer vision, 3D point cloud registration (PCR) aims to seek the optimal transformation to align point cloud pairs. Meanwhile, the equivariance lies at the core of matching point clouds at arbitrary pose. In this paper, we propose GETr, a geometric equivariant transformer for PCR. By learning the point-wise orientations, we decouple the coordinate to the pose of the point clouds, which is the key to achieve equivariance in our framework. Then we utilize attention mechanism to learn the geometric features for superpoints matching, the proposed novel self-attention mechanism encodes the geometric information of point clouds. Finally, the coarse-to-fine manner is used to obtain high-quality correspondence for registration. Extensive experiments on both indoor and outdoor benchmarks demonstrate that our method outperforms various existing state-of-the-art methods.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15216","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15216","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

As a fundamental problem in computer vision, 3D point cloud registration (PCR) aims to seek the optimal transformation to align point cloud pairs. Meanwhile, the equivariance lies at the core of matching point clouds at arbitrary pose. In this paper, we propose GETr, a geometric equivariant transformer for PCR. By learning the point-wise orientations, we decouple the coordinate to the pose of the point clouds, which is the key to achieve equivariance in our framework. Then we utilize attention mechanism to learn the geometric features for superpoints matching, the proposed novel self-attention mechanism encodes the geometric information of point clouds. Finally, the coarse-to-fine manner is used to obtain high-quality correspondence for registration. Extensive experiments on both indoor and outdoor benchmarks demonstrate that our method outperforms various existing state-of-the-art methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GETr:用于点云注册的几何等差变换器
作为计算机视觉领域的一个基本问题,三维点云配准(PCR)旨在寻求最佳变换来对齐点云对。同时,等方差是任意姿态点云匹配的核心。本文提出了用于 PCR 的几何等差变换器 GETr。通过学习点的方向,我们将坐标与点云的姿态解耦,这是在我们的框架中实现等差性的关键。然后,我们利用注意力机制来学习超点匹配的几何特征,所提出的新型自注意力机制对点云的几何信息进行了编码。最后,我们采用从粗到细的方式来获得高质量的配准对应关系。在室内和室外基准上进行的大量实验表明,我们的方法优于现有的各种先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
期刊最新文献
DiffPop: Plausibility-Guided Object Placement Diffusion for Image Composition Front Matter LGSur-Net: A Local Gaussian Surface Representation Network for Upsampling Highly Sparse Point Cloud 𝒢-Style: Stylized Gaussian Splatting iShapEditing: Intelligent Shape Editing with Diffusion Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1