Ilaria Fraudentali, Chiara Pedalino, Adriana Furlani, Andrea Secchiero, Hilary J. Rogers, Valentina Gallo, Giovanni Antonini, Riccardo Angelini, Alessandra Cona
{"title":"Treatment With Kiwi Peel Extract Delays Browning in Ready-to-Eat Lettuce","authors":"Ilaria Fraudentali, Chiara Pedalino, Adriana Furlani, Andrea Secchiero, Hilary J. Rogers, Valentina Gallo, Giovanni Antonini, Riccardo Angelini, Alessandra Cona","doi":"10.1155/2024/4610926","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Browning reactions caused by oxidative stress occurring during postharvest procedures significantly compromise the quality of ready-to-eat (RTE) vegetables, negatively affecting their market value. Polyphenol oxidase (PPO) and peroxidase (POD) are two major enzymes involved in this phenomenon, as they oxidize phenolic compounds to quinones, which in turn polymerize to brown pigments. Recently, there has been an increasing interest in developing antibrowning treatments using food by-products. Herein, the efficiency of a kiwi peel extract in reducing enzymatic browning of minimally processed lettuce (<i>Lactuca sativa</i>) has been investigated. PPO and POD activities showed an opposite spatial distribution within the leaf, with a higher POD activity in the midvein (MV) and in the inner lamina tissues, and a prevalence of PPO activity in the mesophyll. Considering that MV lignified tissues are those mainly affected by browning, the temporal trend of POD activity over a 20-day storage period at 4°C was investigated. Data showed that treatment with a kiwi peel extract hinders both the increasing trend of POD activity and browning development compared to control leaves. These results could be potentially useful for the industry as they confirm that natural extracts, such as kiwi peel extract, can be valuable for extending the shelf-life of RTE products.</p>\n </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4610926","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/4610926","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Browning reactions caused by oxidative stress occurring during postharvest procedures significantly compromise the quality of ready-to-eat (RTE) vegetables, negatively affecting their market value. Polyphenol oxidase (PPO) and peroxidase (POD) are two major enzymes involved in this phenomenon, as they oxidize phenolic compounds to quinones, which in turn polymerize to brown pigments. Recently, there has been an increasing interest in developing antibrowning treatments using food by-products. Herein, the efficiency of a kiwi peel extract in reducing enzymatic browning of minimally processed lettuce (Lactuca sativa) has been investigated. PPO and POD activities showed an opposite spatial distribution within the leaf, with a higher POD activity in the midvein (MV) and in the inner lamina tissues, and a prevalence of PPO activity in the mesophyll. Considering that MV lignified tissues are those mainly affected by browning, the temporal trend of POD activity over a 20-day storage period at 4°C was investigated. Data showed that treatment with a kiwi peel extract hinders both the increasing trend of POD activity and browning development compared to control leaves. These results could be potentially useful for the industry as they confirm that natural extracts, such as kiwi peel extract, can be valuable for extending the shelf-life of RTE products.
期刊介绍:
The Journal of Food Biochemistry publishes fully peer-reviewed original research and review papers on the effects of handling, storage, and processing on the biochemical aspects of food tissues, systems, and bioactive compounds in the diet.
Researchers in food science, food technology, biochemistry, and nutrition, particularly based in academia and industry, will find much of great use and interest in the journal. Coverage includes:
-Biochemistry of postharvest/postmortem and processing problems
-Enzyme chemistry and technology
-Membrane biology and chemistry
-Cell biology
-Biophysics
-Genetic expression
-Pharmacological properties of food ingredients with an emphasis on the content of bioactive ingredients in foods
Examples of topics covered in recently-published papers on two topics of current wide interest, nutraceuticals/functional foods and postharvest/postmortem, include the following:
-Bioactive compounds found in foods, such as chocolate and herbs, as they affect serum cholesterol, diabetes, hypertension, and heart disease
-The mechanism of the ripening process in fruit
-The biogenesis of flavor precursors in meat
-How biochemical changes in farm-raised fish are affecting processing and edible quality