Electrochemical recycling of lithium-ion batteries: Advancements and future directions

IF 10.7 Q1 CHEMISTRY, PHYSICAL EcoMat Pub Date : 2024-10-13 DOI:10.1002/eom2.12494
Stefanie Arnold, Jean G. A. Ruthes, Choonsoo Kim, Volker Presser
{"title":"Electrochemical recycling of lithium-ion batteries: Advancements and future directions","authors":"Stefanie Arnold,&nbsp;Jean G. A. Ruthes,&nbsp;Choonsoo Kim,&nbsp;Volker Presser","doi":"10.1002/eom2.12494","DOIUrl":null,"url":null,"abstract":"<p>Lithium-ion batteries (LIBs) are at the forefront of technological innovation in the current global energy-transition paradigm, driving surging demand for electric vehicles and renewable energy-storage solutions. Despite their widespread use and superior energy densities, the environmental footprint and resource scarcity associated with LIBs necessitate sustainable recycling strategies. This comprehensive review critically examines the existing landscape of battery recycling methodologies, including pyrometallurgical, hydrometallurgical, and direct recycling techniques, along with emerging approaches such as bioleaching and electrochemical separation. Our analysis not only underscores the environmental and efficiency challenges posed by conventional recycling methods but also highlights the promising potential of electrochemical techniques for enhancing selectivity, reducing energy consumption, and mitigating secondary waste production. By delving into recent advancements and juxtaposing various recycling methodologies, we pinpoint electrochemical recycling as a pivotal technology for efficiently recovering valuable metals, such as Li, Ni, Co, and Mn, from spent LIBs in an environmentally benign manner. Our discussion extends to the scalability, economic viability, and future directions of electrochemical recycling, and advocates for their integration into global battery-recycling infrastructure to address the dual challenges of resource depletion and environmental sustainability.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 11","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12494","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries (LIBs) are at the forefront of technological innovation in the current global energy-transition paradigm, driving surging demand for electric vehicles and renewable energy-storage solutions. Despite their widespread use and superior energy densities, the environmental footprint and resource scarcity associated with LIBs necessitate sustainable recycling strategies. This comprehensive review critically examines the existing landscape of battery recycling methodologies, including pyrometallurgical, hydrometallurgical, and direct recycling techniques, along with emerging approaches such as bioleaching and electrochemical separation. Our analysis not only underscores the environmental and efficiency challenges posed by conventional recycling methods but also highlights the promising potential of electrochemical techniques for enhancing selectivity, reducing energy consumption, and mitigating secondary waste production. By delving into recent advancements and juxtaposing various recycling methodologies, we pinpoint electrochemical recycling as a pivotal technology for efficiently recovering valuable metals, such as Li, Ni, Co, and Mn, from spent LIBs in an environmentally benign manner. Our discussion extends to the scalability, economic viability, and future directions of electrochemical recycling, and advocates for their integration into global battery-recycling infrastructure to address the dual challenges of resource depletion and environmental sustainability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂离子电池的电化学回收:进展与未来方向
在当前的全球能源转型模式中,锂离子电池(LIB)处于技术创新的最前沿,推动了电动汽车和可再生能源存储解决方案需求的激增。尽管锂电池应用广泛,能量密度超高,但由于其对环境的影响和资源的稀缺性,必须采取可持续的回收策略。这篇综合评论严格审查了现有的电池回收方法,包括火法冶金、湿法冶金和直接回收技术,以及生物浸出和电化学分离等新兴方法。我们的分析不仅强调了传统回收方法所带来的环境和效率挑战,还突出了电化学技术在提高选择性、降低能耗和减少二次废物产生方面的巨大潜力。通过深入研究最新进展和并列各种回收方法,我们指出电化学回收是一种关键技术,能以对环境无害的方式从废锂电池中有效回收锂、镍、钴和锰等有价金属。我们的讨论延伸到电化学回收的可扩展性、经济可行性和未来发展方向,并主张将其纳入全球电池回收基础设施,以应对资源枯竭和环境可持续性的双重挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Cover Image Issue Information PTAA-infiltrated thin-walled carbon nanotube electrode with hidden encapsulation for perovskite solar cells Halogen-free solvent processed organic solar sub-modules (≈55 cm2) with 14.70% efficiency by controlling the morphology of alkyl chain engineered polymer donor Minimizing voltage losses in Sn perovskite solar cells by Cs2SnI6 passivation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1