{"title":"Curved Image Triangulation Based on Differentiable Rendering","authors":"Wanyi Wang, Zhonggui Chen, Lincong Fang, Juan Cao","doi":"10.1111/cgf.15232","DOIUrl":null,"url":null,"abstract":"<p>Image triangulation methods, which decompose an image into a series of triangles, are fundamental in artistic creation and image processing. This paper introduces a novel framework that integrates cubic Bézier curves into image triangulation, enabling the precise reconstruction of curved image features. Our developed framework constructs a well-structured curved triangle mesh, effectively preventing overlaps between curves. A refined energy function, grounded in differentiable rendering, establishes a direct link between mesh geometry and rendering effects and is instrumental in guiding the curved mesh generation. Additionally, we derive an explicit gradient formula with respect to mesh parameters, facilitating the adaptive and efficient optimization of these parameters to fully leverage the capabilities of cubic Bézier curves. Through experimental and comparative analyses with state-of-the-art methods, our approach demonstrates a significant enhancement in both numerical accuracy and visual quality.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15232","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Image triangulation methods, which decompose an image into a series of triangles, are fundamental in artistic creation and image processing. This paper introduces a novel framework that integrates cubic Bézier curves into image triangulation, enabling the precise reconstruction of curved image features. Our developed framework constructs a well-structured curved triangle mesh, effectively preventing overlaps between curves. A refined energy function, grounded in differentiable rendering, establishes a direct link between mesh geometry and rendering effects and is instrumental in guiding the curved mesh generation. Additionally, we derive an explicit gradient formula with respect to mesh parameters, facilitating the adaptive and efficient optimization of these parameters to fully leverage the capabilities of cubic Bézier curves. Through experimental and comparative analyses with state-of-the-art methods, our approach demonstrates a significant enhancement in both numerical accuracy and visual quality.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.