J. Li, Z. Wen, L. Zhang, J. Hu, F. Hou, Z. Zhang, Y. He
{"title":"GS-Octree: Octree-based 3D Gaussian Splatting for Robust Object-level 3D Reconstruction Under Strong Lighting","authors":"J. Li, Z. Wen, L. Zhang, J. Hu, F. Hou, Z. Zhang, Y. He","doi":"10.1111/cgf.15206","DOIUrl":null,"url":null,"abstract":"<p>The 3D Gaussian Splatting technique has significantly advanced the construction of radiance fields from multi-view images, enabling real-time rendering. While point-based rasterization effectively reduces computational demands for rendering, it often struggles to accurately reconstruct the geometry of the target object, especially under strong lighting conditions. Strong lighting can cause significant color variations on the object's surface when viewed from different directions, complicating the reconstruction process. To address this challenge, we introduce an approach that combines octree-based implicit surface representations with Gaussian Splatting. Initially, it reconstructs a signed distance field (SDF) and a radiance field through volume rendering, encoding them in a low-resolution octree. This initial SDF represents the coarse geometry of the target object. Subsequently, it introduces 3D Gaussians as additional degrees of freedom, which are guided by the initial SDF. In the third stage, the optimized Gaussians enhance the accuracy of the SDF, enabling the recovery of finer geometric details compared to the initial SDF. Finally, the refined SDF is used to further optimize the 3D Gaussians via splatting, eliminating those that contribute little to the visual appearance. Experimental results show that our method, which leverages the distribution of 3D Gaussians with SDFs, reconstructs more accurate geometry, particularly in images with specular highlights caused by strong lighting. The source code can be downloaded from https://github.com/LaoChui999/GS-Octree.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15206","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The 3D Gaussian Splatting technique has significantly advanced the construction of radiance fields from multi-view images, enabling real-time rendering. While point-based rasterization effectively reduces computational demands for rendering, it often struggles to accurately reconstruct the geometry of the target object, especially under strong lighting conditions. Strong lighting can cause significant color variations on the object's surface when viewed from different directions, complicating the reconstruction process. To address this challenge, we introduce an approach that combines octree-based implicit surface representations with Gaussian Splatting. Initially, it reconstructs a signed distance field (SDF) and a radiance field through volume rendering, encoding them in a low-resolution octree. This initial SDF represents the coarse geometry of the target object. Subsequently, it introduces 3D Gaussians as additional degrees of freedom, which are guided by the initial SDF. In the third stage, the optimized Gaussians enhance the accuracy of the SDF, enabling the recovery of finer geometric details compared to the initial SDF. Finally, the refined SDF is used to further optimize the 3D Gaussians via splatting, eliminating those that contribute little to the visual appearance. Experimental results show that our method, which leverages the distribution of 3D Gaussians with SDFs, reconstructs more accurate geometry, particularly in images with specular highlights caused by strong lighting. The source code can be downloaded from https://github.com/LaoChui999/GS-Octree.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.