{"title":"A TransISP Based Image Enhancement Method for Visual Disbalance in Low-light Images","authors":"Jiaqi Wu, Jing Guo, Rui Jing, Shihao Zhang, Zijian Tian, Wei Chen, Zehua Wang","doi":"10.1111/cgf.15209","DOIUrl":null,"url":null,"abstract":"<p>Existing image enhancement algorithms often fail to effectively address issues of visual disbalance, such as brightness unevenness and color distortion, in low-light images. To overcome these challenges, we propose a TransISP-based image enhancement method specifically designed for low-light images. To mitigate color distortion, we design dual encoders based on decoupled representation learning, which enable complete decoupling of the reflection and illumination components, thereby preventing mutual interference during the image enhancement process. To address brightness unevenness, we introduce CNNformer, a hybrid model combining CNN and Transformer. This model efficiently captures local details and long-distance dependencies between pixels, contributing to the enhancement of brightness features across various local regions. Additionally, we integrate traditional image signal processing algorithms to achieve efficient color correction and denoising of the reflection component. Furthermore, we employ a generative adversarial network (GAN) as the overarching framework to facilitate unsupervised learning. The experimental results show that, compared with six SOTA image enhancement algorithms, our method obtains significant improvement in evaluation indexes (e.g., on LOL, PSNR: 15.59%, SSIM: 9.77%, VIF: 9.65%), and it can improve visual disbalance defects in low-light images captured from real-world coal mine underground scenarios.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15209","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Existing image enhancement algorithms often fail to effectively address issues of visual disbalance, such as brightness unevenness and color distortion, in low-light images. To overcome these challenges, we propose a TransISP-based image enhancement method specifically designed for low-light images. To mitigate color distortion, we design dual encoders based on decoupled representation learning, which enable complete decoupling of the reflection and illumination components, thereby preventing mutual interference during the image enhancement process. To address brightness unevenness, we introduce CNNformer, a hybrid model combining CNN and Transformer. This model efficiently captures local details and long-distance dependencies between pixels, contributing to the enhancement of brightness features across various local regions. Additionally, we integrate traditional image signal processing algorithms to achieve efficient color correction and denoising of the reflection component. Furthermore, we employ a generative adversarial network (GAN) as the overarching framework to facilitate unsupervised learning. The experimental results show that, compared with six SOTA image enhancement algorithms, our method obtains significant improvement in evaluation indexes (e.g., on LOL, PSNR: 15.59%, SSIM: 9.77%, VIF: 9.65%), and it can improve visual disbalance defects in low-light images captured from real-world coal mine underground scenarios.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.