{"title":"Multiplexed quantum repeaters based on single-photon interference with mild stabilization","authors":"Daisuke Yoshida, Tomoyuki Horikiri","doi":"10.1038/s42005-024-01849-6","DOIUrl":null,"url":null,"abstract":"Quantum repeaters are pivotal in the physical layer of the quantum internet, and quantum repeaters capable of efficient entanglement distribution are necessary for its development. Quantum repeater schemes based on single-photon interference are promising because of their potential efficiency. However, schemes involving first-order interference with photon sources at distant nodes require stringent phase stability of the components, which pose challenges for long-distance implementation. In this paper, we present a quantum repeater scheme that leverages single-photon interference and reduces the difficulty of achieving phase stabilization. Additionally, under specific conditions, our scheme achieves a higher entanglement distribution rate between end nodes compared with the existing schemes. Thus, the proposed approach could lead to improved rates with technologies that are currently unavailable but possible in the future and will ultimately facilitate the development of multimode quantum repeaters. Single-photon interference based quantum repeater schemes are promising due to their potential efficiency. Here, the authors offer a theoretical quantum repeater scheme with reduced complexity of phase stabilization and scope for higher entanglement rates between the end nodes.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01849-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01849-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum repeaters are pivotal in the physical layer of the quantum internet, and quantum repeaters capable of efficient entanglement distribution are necessary for its development. Quantum repeater schemes based on single-photon interference are promising because of their potential efficiency. However, schemes involving first-order interference with photon sources at distant nodes require stringent phase stability of the components, which pose challenges for long-distance implementation. In this paper, we present a quantum repeater scheme that leverages single-photon interference and reduces the difficulty of achieving phase stabilization. Additionally, under specific conditions, our scheme achieves a higher entanglement distribution rate between end nodes compared with the existing schemes. Thus, the proposed approach could lead to improved rates with technologies that are currently unavailable but possible in the future and will ultimately facilitate the development of multimode quantum repeaters. Single-photon interference based quantum repeater schemes are promising due to their potential efficiency. Here, the authors offer a theoretical quantum repeater scheme with reduced complexity of phase stabilization and scope for higher entanglement rates between the end nodes.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.