Multiplexed quantum repeaters based on single-photon interference with mild stabilization

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-11-15 DOI:10.1038/s42005-024-01849-6
Daisuke Yoshida, Tomoyuki Horikiri
{"title":"Multiplexed quantum repeaters based on single-photon interference with mild stabilization","authors":"Daisuke Yoshida, Tomoyuki Horikiri","doi":"10.1038/s42005-024-01849-6","DOIUrl":null,"url":null,"abstract":"Quantum repeaters are pivotal in the physical layer of the quantum internet, and quantum repeaters capable of efficient entanglement distribution are necessary for its development. Quantum repeater schemes based on single-photon interference are promising because of their potential efficiency. However, schemes involving first-order interference with photon sources at distant nodes require stringent phase stability of the components, which pose challenges for long-distance implementation. In this paper, we present a quantum repeater scheme that leverages single-photon interference and reduces the difficulty of achieving phase stabilization. Additionally, under specific conditions, our scheme achieves a higher entanglement distribution rate between end nodes compared with the existing schemes. Thus, the proposed approach could lead to improved rates with technologies that are currently unavailable but possible in the future and will ultimately facilitate the development of multimode quantum repeaters. Single-photon interference based quantum repeater schemes are promising due to their potential efficiency. Here, the authors offer a theoretical quantum repeater scheme with reduced complexity of phase stabilization and scope for higher entanglement rates between the end nodes.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01849-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01849-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum repeaters are pivotal in the physical layer of the quantum internet, and quantum repeaters capable of efficient entanglement distribution are necessary for its development. Quantum repeater schemes based on single-photon interference are promising because of their potential efficiency. However, schemes involving first-order interference with photon sources at distant nodes require stringent phase stability of the components, which pose challenges for long-distance implementation. In this paper, we present a quantum repeater scheme that leverages single-photon interference and reduces the difficulty of achieving phase stabilization. Additionally, under specific conditions, our scheme achieves a higher entanglement distribution rate between end nodes compared with the existing schemes. Thus, the proposed approach could lead to improved rates with technologies that are currently unavailable but possible in the future and will ultimately facilitate the development of multimode quantum repeaters. Single-photon interference based quantum repeater schemes are promising due to their potential efficiency. Here, the authors offer a theoretical quantum repeater scheme with reduced complexity of phase stabilization and scope for higher entanglement rates between the end nodes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于温和稳定的单光子干涉的复用量子中继器
量子中继器是量子互联网物理层的关键,而能够高效分配纠缠的量子中继器是量子互联网发展的必要条件。基于单光子干涉的量子中继器方案因其潜在的效率而大有可为。然而,涉及与遥远节点光子源的一阶干涉的方案要求组件具有严格的相位稳定性,这给远距离实施带来了挑战。在本文中,我们提出了一种量子中继器方案,它利用单光子干涉,降低了实现相位稳定的难度。此外,在特定条件下,与现有方案相比,我们的方案在终端节点之间实现了更高的纠缠分配率。因此,所提出的方法可以利用目前尚不存在但未来有可能实现的技术提高速率,并最终促进多模量子中继器的发展。基于单光子干涉的量子中继器方案因其潜在的效率而大有可为。在此,作者提出了一种理论上的量子中继器方案,该方案降低了相位稳定的复杂性,并可提高终端节点之间的纠缠率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Topological transition in filamentous cyanobacteria: from motion to structure Benchmarking the optimization of optical machines with the planted solutions Spontaneous flows and quantum analogies in heterogeneous active nematic films Quantum switch instabilities with an open control Time persistence of climate and carbon flux networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1