{"title":"Light-enhanced nonlinear Hall effect","authors":"Fang Qin, Rui Chen, Ching Hua Lee","doi":"10.1038/s42005-024-01820-5","DOIUrl":null,"url":null,"abstract":"The Hall response can be dramatically different from its quantized value in materials with broken inversion symmetry. This stems from the leading Hall contribution beyond the linear order, known as the Berry curvature dipole (BCD). While the BCD is in principle always present, it is typically very small outside of a narrow window close to a topological transition and is thus experimentally elusive without careful tuning of external fields, temperature, or impurities. We transcend this challenge by devising optical driving and quench protocols that enable practical and direct access to large BCD. Varying the amplitude of an incident circularly polarized laser drives a topological transition between normal and Chern insulator phases, and importantly allows the precise unlocking of nonlinear Hall currents comparable to or larger than the linear Hall contributions. This strong BCD engineering is even more versatile with our two-parameter quench protocol, as demonstrated in our experimental proposal. In this work, the authors investigate nonlinear Hall materials under optical driving. They find that nonlinear Hall materials can exhibit a strong light-enhanced nonlinear Hall response when excited by circularly polarized lasers.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-14"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01820-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01820-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Hall response can be dramatically different from its quantized value in materials with broken inversion symmetry. This stems from the leading Hall contribution beyond the linear order, known as the Berry curvature dipole (BCD). While the BCD is in principle always present, it is typically very small outside of a narrow window close to a topological transition and is thus experimentally elusive without careful tuning of external fields, temperature, or impurities. We transcend this challenge by devising optical driving and quench protocols that enable practical and direct access to large BCD. Varying the amplitude of an incident circularly polarized laser drives a topological transition between normal and Chern insulator phases, and importantly allows the precise unlocking of nonlinear Hall currents comparable to or larger than the linear Hall contributions. This strong BCD engineering is even more versatile with our two-parameter quench protocol, as demonstrated in our experimental proposal. In this work, the authors investigate nonlinear Hall materials under optical driving. They find that nonlinear Hall materials can exhibit a strong light-enhanced nonlinear Hall response when excited by circularly polarized lasers.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.