{"title":"Time persistence of climate and carbon flux networks","authors":"Ting Qing, Fan Wang, Qiuyue Li, Gaogao Dong, Lixin Tian, Shlomo Havlin","doi":"10.1038/s42005-024-01862-9","DOIUrl":null,"url":null,"abstract":"The persistence of the global climate system is critical for assuring the sustainability of the natural ecosystem. However, persistence at a network level has been rarely discussed. Here we develop a framework to analyze the time persistence of the yearly networks of climate and carbon flux, based on cross-correlations between sites, using daily data from China, the contiguous United States, and the Europe land region. Our framework for determining the persistence is based on analyzing the similarity between the network structures in different years. Our results reveal that the similarity of climate and carbon flux networks in different years are within the range of 0.57 ± 0.07, implying that the climate and carbon flux in the Earth’s climate system are generally persistent and in a steady state. We find a very small decay in similarity when the gap between years increases. Moreover, we find that the persistence of climate variables and carbon flux in the three regions decreases when considering only long range links. Analyzing the persistence and evolution of the climate and carbon flux networks, enhance our understanding of the spatial and temporal evolution of the global climate system. The persistence of the global climate system is essential for the sustainability of natural ecosystems. This work develops a framework, generate climate and carbon flux networks and finds that the similarity of the networks in different years is 0.57 ± 0.07, implying that the system is generally stable and that the similarity decay is very small when the year gap increases.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01862-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01862-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The persistence of the global climate system is critical for assuring the sustainability of the natural ecosystem. However, persistence at a network level has been rarely discussed. Here we develop a framework to analyze the time persistence of the yearly networks of climate and carbon flux, based on cross-correlations between sites, using daily data from China, the contiguous United States, and the Europe land region. Our framework for determining the persistence is based on analyzing the similarity between the network structures in different years. Our results reveal that the similarity of climate and carbon flux networks in different years are within the range of 0.57 ± 0.07, implying that the climate and carbon flux in the Earth’s climate system are generally persistent and in a steady state. We find a very small decay in similarity when the gap between years increases. Moreover, we find that the persistence of climate variables and carbon flux in the three regions decreases when considering only long range links. Analyzing the persistence and evolution of the climate and carbon flux networks, enhance our understanding of the spatial and temporal evolution of the global climate system. The persistence of the global climate system is essential for the sustainability of natural ecosystems. This work develops a framework, generate climate and carbon flux networks and finds that the similarity of the networks in different years is 0.57 ± 0.07, implying that the system is generally stable and that the similarity decay is very small when the year gap increases.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.