Investigation on the structure characteristics, stability evaluation, and oral tribology of natural oleanolic acid-based water-in-oil high internal phase and multiple Pickering emulsions as realistic fat analogues
{"title":"Investigation on the structure characteristics, stability evaluation, and oral tribology of natural oleanolic acid-based water-in-oil high internal phase and multiple Pickering emulsions as realistic fat analogues","authors":"Liyang Du, Shanshan Zhou, Yilei Huang, Zong Meng","doi":"10.1016/j.foodchem.2024.142121","DOIUrl":null,"url":null,"abstract":"Herein, it proved that oleanolic acid (OA) could self-assemble into particles in oil, further exhibiting great potential in creating Pickering water-in-oil (W/O) high internal phase emulsions (HIPEs) with desirable fat-like attributes. W/O HIPE with a water content of 85 wt% could be stabilized by 3 wt% OA, their fat-like performance could be optimized by modulating the filling density of water droplets and interfacial coverage. The stabilization included particle-coated, particle and droplet co-coated, and droplet-coated interfaces depending on the OA amount. HIPEs with excellent tolerance to high-temperature and freeze-thaw treatment could be achieved. Moreover, dual-interface Pickering-stabilization water-in-oil-in-water (W/O/W) emulsions with a fat-like texture were fabricated via a one-step homogenization stabilized with OA particles and microgels. Importantly, OA-based W/O and W/O/W emulsion gels possessed smooth oral sensation and similar tribology behaviors to milk fat. This work is expected to provide a “clean-label” route to develop multiphase fat analogues involved in natural materials.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.142121","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, it proved that oleanolic acid (OA) could self-assemble into particles in oil, further exhibiting great potential in creating Pickering water-in-oil (W/O) high internal phase emulsions (HIPEs) with desirable fat-like attributes. W/O HIPE with a water content of 85 wt% could be stabilized by 3 wt% OA, their fat-like performance could be optimized by modulating the filling density of water droplets and interfacial coverage. The stabilization included particle-coated, particle and droplet co-coated, and droplet-coated interfaces depending on the OA amount. HIPEs with excellent tolerance to high-temperature and freeze-thaw treatment could be achieved. Moreover, dual-interface Pickering-stabilization water-in-oil-in-water (W/O/W) emulsions with a fat-like texture were fabricated via a one-step homogenization stabilized with OA particles and microgels. Importantly, OA-based W/O and W/O/W emulsion gels possessed smooth oral sensation and similar tribology behaviors to milk fat. This work is expected to provide a “clean-label” route to develop multiphase fat analogues involved in natural materials.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.