Schottky Interface Engineering in Ti3C2Tx/ZnS Organic Hydrogels for High-Performance Multifunctional Flexible Absorbers

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-17 DOI:10.1002/adfm.202417346
Yuhong Cui, Guoliang Ru, Tianyi Zhang, Ke Yang, Shujuan Liu, Weihong Qi, Qian Ye, Xuqing Liu, Feng Zhou
{"title":"Schottky Interface Engineering in Ti3C2Tx/ZnS Organic Hydrogels for High-Performance Multifunctional Flexible Absorbers","authors":"Yuhong Cui, Guoliang Ru, Tianyi Zhang, Ke Yang, Shujuan Liu, Weihong Qi, Qian Ye, Xuqing Liu, Feng Zhou","doi":"10.1002/adfm.202417346","DOIUrl":null,"url":null,"abstract":"With the rapid advancement of wearable electronics, soft robotics, and camouflage technologies, there is an urgent demand for flexible, multifunctional electromagnetic wave absorbing materials. Traditional absorbers, including metal- and carbon-based materials, often lack the flexibility required for such applications. In this work, a novel strategy is proposed for developing a flexible absorber by combining a conductive filler with a Schottky heterogeneous interface and a polymer network framework. Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene is modified with ZnS via a low-temperature hydrothermal method, forming a Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/ZnS composite. This composite is subsequently embedded in a copolymer matrix of polyvinyl alcohol (PVA) and acrylamide (AAm), dispersed in a binary water-glycerol solution. The Schottky interface between Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and ZnS enhances electron transfer at the heterophase boundary, significantly improving interface polarisation. Simultaneously, interactions between water and glycerol restrict the rotation of polar molecules under external electromagnetic fields, optimising polarisation loss within the gel. Experimental results demonstrate that the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/ZnS gel achieves a minimum reflection loss (RL<sub>min</sub>) of −43.76 dB at 8.79 GHz, with an effective absorption bandwidth (EAB) covering the entire X-band. Additionally, the gel exhibit exceptional stretchability, frost resistance, shape adaptability, and photothermal conversion properties.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"13 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417346","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid advancement of wearable electronics, soft robotics, and camouflage technologies, there is an urgent demand for flexible, multifunctional electromagnetic wave absorbing materials. Traditional absorbers, including metal- and carbon-based materials, often lack the flexibility required for such applications. In this work, a novel strategy is proposed for developing a flexible absorber by combining a conductive filler with a Schottky heterogeneous interface and a polymer network framework. Ti3C2Tx MXene is modified with ZnS via a low-temperature hydrothermal method, forming a Ti3C2Tx/ZnS composite. This composite is subsequently embedded in a copolymer matrix of polyvinyl alcohol (PVA) and acrylamide (AAm), dispersed in a binary water-glycerol solution. The Schottky interface between Ti3C2Tx and ZnS enhances electron transfer at the heterophase boundary, significantly improving interface polarisation. Simultaneously, interactions between water and glycerol restrict the rotation of polar molecules under external electromagnetic fields, optimising polarisation loss within the gel. Experimental results demonstrate that the Ti3C2Tx/ZnS gel achieves a minimum reflection loss (RLmin) of −43.76 dB at 8.79 GHz, with an effective absorption bandwidth (EAB) covering the entire X-band. Additionally, the gel exhibit exceptional stretchability, frost resistance, shape adaptability, and photothermal conversion properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能多功能柔性吸收器的 Ti3C2Tx/ZnS 有机水凝胶中的肖特基界面工程技术
随着可穿戴电子设备、软机器人和伪装技术的快速发展,对柔性多功能电磁波吸收材料的需求日益迫切。传统的吸收材料,包括金属和碳基材料,往往缺乏此类应用所需的柔性。在这项研究中,我们提出了一种新颖的策略,通过将导电填料与肖特基异质界面和聚合物网络框架相结合来开发柔性吸波材料。通过低温水热法,用 ZnS 对 Ti3C2Tx MXene 进行改性,形成 Ti3C2Tx/ZnS 复合材料。这种复合材料随后被嵌入分散在二元水-甘油溶液中的聚乙烯醇(PVA)和丙烯酰胺(AAm)共聚物基质中。Ti3C2Tx 和 ZnS 之间的肖特基界面增强了异相边界的电子转移,显著改善了界面极化。同时,水和甘油之间的相互作用限制了极性分子在外部电磁场作用下的旋转,从而优化了凝胶内部的极化损失。实验结果表明,Ti3C2Tx/ZnS 凝胶在 8.79 GHz 时的最小反射损耗(RLmin)为 -43.76 dB,有效吸收带宽(EAB)覆盖整个 X 波段。此外,这种凝胶还具有优异的拉伸性、抗冻性、形状适应性和光热转换特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Enhanced Mechanical-Magnetic Coupling and Bioinspired Structural Design of Magnetorheological Elastomers Band Structure and Spin-State-Induced Electronic Configuration Regulation for Efficient Sulfur Redox Reaction The Out-of-Plane C─S Bonds Boosting Reversible Redox in Copper Sulfide Cathodes for Ultradurable Magnesium Battery 12.86% Efficient Cu2ZnSn(S,Se)4 Thin Film Solar Cells via Inkjet Printing with 2-Methoxyethanol-Based Air-Stable Precursor Ink Atomically Dispersed Scandium in Cuprous Oxide Weakens *CO Adsorption to Boost Carbon Dioxide Electroreduction Toward C2 Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1