Polarization Stability and Its Influence on Electrocaloric Effects of High Entropy Perovskite Oxide Films

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2024-11-17 DOI:10.1016/j.actamat.2024.120576
Yeongwoo Son, Stanislav Udovenko, Sai Venkatra Gayathri Ayyagari, John Barber, Kae Nakamura, Christina M. Rost, Nasim Alem, Susan Trolier-McKinstry
{"title":"Polarization Stability and Its Influence on Electrocaloric Effects of High Entropy Perovskite Oxide Films","authors":"Yeongwoo Son, Stanislav Udovenko, Sai Venkatra Gayathri Ayyagari, John Barber, Kae Nakamura, Christina M. Rost, Nasim Alem, Susan Trolier-McKinstry","doi":"10.1016/j.actamat.2024.120576","DOIUrl":null,"url":null,"abstract":"In principle, the configurational entropy inherent in High Entropy Oxides (HEOs) could facilitate large electrocaloric effects (ECE) by promoting polar entropy. In this study, it is demonstrated that the time stability of the remanent polarization can be tuned via B-site disorder in High Entropy Perovskite Oxides (HEPO) films. Eight HEPO powders were synthesized; the propensity for perovskite phase formation was consistent with the Goldschmidt tolerance factor. While entropic contributions stabilize HEPO, they do not fully predict the stabilization. Relative dielectric permittivities between 2000 to 600 can be achieved for the B-site disordered HEPO films with loss tangents below 6% at room temperature. All films showed similar polarization-electric field loops with maximum polarization up to 48 <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -796.9 1326 1096.9\" width=\"3.08ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BC\"></use></g><g is=\"true\" transform=\"translate(603,0)\"><use xlink:href=\"#MJMAIN-43\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">μ</mi><mi is=\"true\" mathvariant=\"normal\">C</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">μ</mi><mi mathvariant=\"normal\" is=\"true\">C</mi></mrow></math></script></span> cm<sup>−2</sup> and a remanent polarization <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2265;&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.466ex;\" viewbox=\"0 -697.5 778.5 898.2\" width=\"1.808ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2265\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo is=\"true\">≥</mo></math></span></span><script type=\"math/mml\"><math><mo is=\"true\">≥</mo></math></script></span> 20 <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -796.9 1326 1096.9\" width=\"3.08ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BC\"></use></g><g is=\"true\" transform=\"translate(603,0)\"><use xlink:href=\"#MJMAIN-43\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">μ</mi><mi is=\"true\" mathvariant=\"normal\">C</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">μ</mi><mi mathvariant=\"normal\" is=\"true\">C</mi></mrow></math></script></span> cm<sup>−2</sup> measured at room temperature with applied electric field of 1100 kV cm<sup>−1</sup> at a frequency of 10 kHz. The temperature of the dielectric maximum (T<sub>max</sub>) increased from 105°C to 225°C with increasing average ion size on the B-site. Polarization stability of the HEPO films was investigated using Positive-Up-Negative-Down (PUND) measurements. It was found that in some HEPO films, 24% of the remanent polarization decayed within 2 s. By employing the time stability of the remanent polarization, enhanced electrocaloric effects of HEPO film was predicted to be 14.9 K and 11.5 J Kg<sup>−1</sup> K<sup>−1</sup> at an applied field of 1120 kV cm<sup>−1</sup>, for electrocaloric temperature change and entropy change, respectively.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"117 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120576","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In principle, the configurational entropy inherent in High Entropy Oxides (HEOs) could facilitate large electrocaloric effects (ECE) by promoting polar entropy. In this study, it is demonstrated that the time stability of the remanent polarization can be tuned via B-site disorder in High Entropy Perovskite Oxides (HEPO) films. Eight HEPO powders were synthesized; the propensity for perovskite phase formation was consistent with the Goldschmidt tolerance factor. While entropic contributions stabilize HEPO, they do not fully predict the stabilization. Relative dielectric permittivities between 2000 to 600 can be achieved for the B-site disordered HEPO films with loss tangents below 6% at room temperature. All films showed similar polarization-electric field loops with maximum polarization up to 48 μC cm−2 and a remanent polarization 20 μC cm−2 measured at room temperature with applied electric field of 1100 kV cm−1 at a frequency of 10 kHz. The temperature of the dielectric maximum (Tmax) increased from 105°C to 225°C with increasing average ion size on the B-site. Polarization stability of the HEPO films was investigated using Positive-Up-Negative-Down (PUND) measurements. It was found that in some HEPO films, 24% of the remanent polarization decayed within 2 s. By employing the time stability of the remanent polarization, enhanced electrocaloric effects of HEPO film was predicted to be 14.9 K and 11.5 J Kg−1 K−1 at an applied field of 1120 kV cm−1, for electrocaloric temperature change and entropy change, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极化稳定性及其对高熵过氧化物薄膜电致效应的影响
从原理上讲,高熵氧化物(HEOs)固有的构型熵可以通过促进极性熵来促进大型电致效应(ECE)。本研究证明,可以通过高熵过氧化物(HEPO)薄膜中的 B 位无序来调节剩电位极化的时间稳定性。研究人员合成了八种 HEPO 粉末;包晶相形成的倾向与戈德施密特公差因子一致。虽然熵贡献使 HEPO 趋于稳定,但并不能完全预测其稳定性。B 位无序 HEPO 薄膜的相对介电常数介于 2000 到 600 之间,室温下的损耗切线低于 6%。所有薄膜都显示出相似的极化-电场环路,最大极化可达 48 μCμC cm-2,剩极化≥ 20 μCμC cm-2,这是在室温下以 10 kHz 频率、1100 kV cm-1 的外加电场测量的。随着 B 位上平均离子尺寸的增加,介电最大值(Tmax)温度从 105°C 上升到 225°C。利用正-上-负-下(PUND)测量法研究了 HEPO 薄膜的极化稳定性。通过利用剩电位极化的时间稳定性,可以预测在 1120 kV cm-1 的外加电场下,HEPO 薄膜的增强电解效应分别为 14.9 K 和 11.5 J Kg-1 K-1,电解温度变化和熵变化分别为 14.9 K 和 11.5 J Kg-1 K-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Suppressing embrittlement and enhancing thermal resistance of bulk superlattice alloys by controllable grain-boundary segregation Behavior of Fe-Based Alloys in a Liquid Lead-Bismuth Environment under Simultaneous Proton Irradiation and Corrosion Spatially confined magnetic shape-memory Heuslers: implications for nanoscale devices Short-range order in ion irradiated fluorite structural derivatives in Sc2O3-HfO2 Elaborately-designed high-performance BiFeO3-PbTiO3 ceramics through refreshing phase boundary
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1