{"title":"Protein structural properties, proteomics and flavor characterization analysis of rice during cooking","authors":"Donghao Zhang, Yanpei Cai, Fei Lao, Jihong Wu","doi":"10.1016/j.foodchem.2024.142101","DOIUrl":null,"url":null,"abstract":"This study analyzed the changes in rice protein structure, protein profiling, and flavor profiles at different cooking stages, as well as their interrelationships. In the continuous cooking process, changes in protein structure characteristics were mainly reflected in the boiling and stewing stages. Protein unfolding and aggregation were important reasons for significant changes in protein structural characteristics. Protein disulfide isomerases and glycine-rich RNA-binding proteins can be used as marker factors to characterize the changes during rice cooking. The concentrations of aldehydes, esters, and alcohols gradually decreased during cooking. Heterocycles were primarily present in boiled and stewed rice. Fatty acid degradation, starch/sucrose metabolism, glycolysis/gluconeogenesis, and other reaction pathways were closely associated with rice aroma quality. Aldehydes, ketones, and heterocycles were correlated with changes in surface hydrophobicity, secondary structure composition, and other structural properties of the protein. This study preliminarily established the relationship between aroma characteristics and rice protein.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"168 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.142101","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study analyzed the changes in rice protein structure, protein profiling, and flavor profiles at different cooking stages, as well as their interrelationships. In the continuous cooking process, changes in protein structure characteristics were mainly reflected in the boiling and stewing stages. Protein unfolding and aggregation were important reasons for significant changes in protein structural characteristics. Protein disulfide isomerases and glycine-rich RNA-binding proteins can be used as marker factors to characterize the changes during rice cooking. The concentrations of aldehydes, esters, and alcohols gradually decreased during cooking. Heterocycles were primarily present in boiled and stewed rice. Fatty acid degradation, starch/sucrose metabolism, glycolysis/gluconeogenesis, and other reaction pathways were closely associated with rice aroma quality. Aldehydes, ketones, and heterocycles were correlated with changes in surface hydrophobicity, secondary structure composition, and other structural properties of the protein. This study preliminarily established the relationship between aroma characteristics and rice protein.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.