DNA or Not DNA —That is the Question Determining the Design of Platinum Anticancer Drugs

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL European Journal of Medicinal Chemistry Pub Date : 2024-11-17 DOI:10.1016/j.ejmech.2024.117077
Suxing Jin, Chenyao Feng, Xiaoyong Wang
{"title":"DNA or Not DNA —That is the Question Determining the Design of Platinum Anticancer Drugs","authors":"Suxing Jin, Chenyao Feng, Xiaoyong Wang","doi":"10.1016/j.ejmech.2024.117077","DOIUrl":null,"url":null,"abstract":"Platinum drugs are the most widely used chemotherapeutics to treat various tumors. Their primary mode of action is supposed to be inducing apoptosis of cancer cells via covalent binding to DNA. This mechanism has shackled the design of new platinum drugs for many years. Mounting evidence shows that many platinum complexes form non-covalent adducts with DNA or interact with proteins to exhibit significant antitumor activity, thus implying some distinct mechanisms from that of traditional platinum drugs. These unconventional examples indicate that covalent DNA binding is not the precondition for the antitumor activity of platinum complexes, and diversified reactions or interactions with biomolecules, organelles, signal pathways, or immune system could lead to the antitumor activity of platinum complexes. The atypical mechanisms break the classical DNA-only paradigm and structure−activity relationships, thus opening a wide avenue for the design of innovative platinum anticancer drugs.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"76 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2024.117077","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Platinum drugs are the most widely used chemotherapeutics to treat various tumors. Their primary mode of action is supposed to be inducing apoptosis of cancer cells via covalent binding to DNA. This mechanism has shackled the design of new platinum drugs for many years. Mounting evidence shows that many platinum complexes form non-covalent adducts with DNA or interact with proteins to exhibit significant antitumor activity, thus implying some distinct mechanisms from that of traditional platinum drugs. These unconventional examples indicate that covalent DNA binding is not the precondition for the antitumor activity of platinum complexes, and diversified reactions or interactions with biomolecules, organelles, signal pathways, or immune system could lead to the antitumor activity of platinum complexes. The atypical mechanisms break the classical DNA-only paradigm and structure−activity relationships, thus opening a wide avenue for the design of innovative platinum anticancer drugs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA 与否--这是一个决定铂类抗癌药物设计的问题
铂类药物是治疗各种肿瘤最广泛使用的化疗药物。它们的主要作用方式是通过与 DNA 的共价结合诱导癌细胞凋亡。这种机制多年来一直束缚着新铂类药物的设计。越来越多的证据表明,许多铂复合物与 DNA 形成非共价加合物,或与蛋白质相互作用,从而表现出显著的抗肿瘤活性,这意味着与传统铂类药物的机制不同。这些非传统的例子表明,DNA共价结合并不是铂复合物抗肿瘤活性的前提条件,与生物大分子、细胞器、信号通路或免疫系统的多样化反应或相互作用可能导致铂复合物的抗肿瘤活性。非典型机制打破了经典的纯 DNA 范式和结构-活性关系,从而为设计创新的铂类抗癌药物开辟了一条广阔的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
期刊最新文献
Discovery of Potent and Selective Factor XIa Inhibitors Incorporating Triazole-Based Benzoic Acid as Novel P2’ Fragments: Molecular Dynamics Simulations and Anticoagulant Activity Design, synthesis, and biological evaluation of novel highly potent FXR agonists bearing piperidine scaffold Design, synthesis and anti-tumor evaluation of novel pyrimidine and quinazoline analogues Optimization of SHP2 Allosteric Inhibitors with Novel Tail Heterocycles and Their Potential as Antitumor Therapeutics Discovery of a Highly Potent, N-terminal Domain-targeting degrader of AR-FL/AR-V7 for the treatment of Prostate Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1